www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit im Nullpunkt
Stetigkeit im Nullpunkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im Nullpunkt: Stetigkeit im Nullpunkt Beweis
Status: (Frage) beantwortet Status 
Datum: 18:00 So 18.02.2018
Autor: nikki678

Aufgabe
Zeigen Sie, dass die Fkt f: R->R im Nullpunkt stetig ist:

f(x)= 0, falls x=0
f(x)= 2x*arctan(1/2x) sonst.

Hallo zusammen,  mich interessiert die Herangehensweise an diese Aufgabe.
Dachte es wäre zZ, dass f(x)= 2x*arctan(1/2x) ->0 für x->0

Oder gibt es einen cleveren Weg?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Vielen Dank für Eure Hilfe

        
Bezug
Stetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 So 18.02.2018
Autor: Diophant

Hallo,

> Zeigen Sie, dass die Fkt f: R->R im Nullpunkt stetig ist:

>

> f(x)= 0, falls x=0
> f(x)= 2x*arctan(1/2x) sonst.
> Hallo zusammen, mich interessiert die Herangehensweise an
> diese Aufgabe.
> Dachte es wäre zZ, dass f(x)= 2x*arctan(1/2x) ->0 für
> x->0

>

> Oder gibt es einen cleveren Weg?

Was soll an deinem Weg nicht 'clever' sein? Mache dir die Definition von Stetigkeit klar, dann sollte dir auch klar werden, dass dein Weg prinzipiell nicht nur der richtige sondern vor allem der einzige ist, da er genau den zu zeigenden Sachverhalt trifft.

Allerdings muss man hier in diesem Fall keinen Grenzwert berechnen, sondern nur den (zweiten) Funktionsterm einmal scharf ansehen und dann ggf. noch begründen, weshalb dieser auf ganz [mm] \IR [/mm] stetig ist. Vielleicht war es ja das, was du wissen wolltest?


Gruß, Diophant

Bezug
                
Bezug
Stetigkeit im Nullpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 So 18.02.2018
Autor: nikki678

Hallo, vielen Dank für die schnelle Antwort!

"den (zweiten) Funktionsterm einmal scharf ansehen und dann ggf. noch begründen, weshalb dieser auf ganz $ [mm] \IR [/mm] $ stetig ist"

Wäre dies noch anders zu beweisen als über die Stetigkeit der Umkehrfunktion?

Bezug
                        
Bezug
Stetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 18.02.2018
Autor: fred97


> Hallo, vielen Dank für die schnelle Antwort!
>  
> "den (zweiten) Funktionsterm einmal scharf ansehen und dann
> ggf. noch begründen, weshalb dieser auf ganz [mm]\IR[/mm] stetig
> ist"
>  
> Wäre dies noch anders zu beweisen als über die Stetigkeit

> der Umkehrfunktion?

Ich denke, dass es nötig ist, dass Du klar sagst,wie das Argument im arctan nun wirklich lautet

[mm] \frac{1}{2}x [/mm]  oder [mm] \frac{1}{2x} [/mm]

im  ersten Fall benötigst  Du zur Beantwortung der Frage das Vehalten von arctan(t) für t [mm] \to [/mm] 0 und im zweiten Fall das Verhalten von arctan(t) für t [mm] \to \infty [/mm]


Bezug
                        
Bezug
Stetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Mo 19.02.2018
Autor: Diophant

Hallo,

> Hallo, vielen Dank für die schnelle Antwort!

>

> "den (zweiten) Funktionsterm einmal scharf ansehen und dann
> ggf. noch begründen, weshalb dieser auf ganz [mm]\IR[/mm] stetig
> ist"

>

> Wäre dies noch anders zu beweisen als über die Stetigkeit
> der Umkehrfunktion?

Hier möchte ich noch mal etwas ausholen. Wie fred97 schon geschrieben hat ist es unklar, wie nun das Argument des Arkustangens aussehen soll.

Ich bin von folgender Version ausgegangen:

[mm]f(x)=\begin{cases}0 &\ ,\ \textrm{für x=0}\\ 2x*arctan\left( \frac{1}{2}x\right) &\ ,\ \textrm{sonst}\end{cases} [/mm]

Und zwar vermutlich, weil ich nicht scharf genug hingesehen habe. Bei dieser Version ist anschaulich klar, dass der zweite Funktionsterm an der Stelle x=0 den Wert 0 annimmt und überall stetig ist

- a) weil die Komposition stetiger Funktionen selbst wieder stetig ist und
- b) (so man das unbedingt erwähnen möchte*) wegen der Stetigkeit der Umkehrfunktion.

Wesentlich mehr Sinn ergibt die andere Interpretation, die FRED vorgeschlagen hat, nämlich

[mm] f(x)=\begin{cases}0 &\ ,\ \textrm{für x=0}\\ 2x*arctan\left( \frac{1}{2x}\right) &\ ,\ \textrm{sonst}\end{cases} [/mm]

Hier ist schon auch offensichtlich, dass das ganze stetig ist, aber für diesen Fall könnte man

[mm] \lim_{x\rightarrow{0}}2x*arctan\left( \frac{1}{2x}\right)=0[/mm]

wenigstens noch kurz begründen. Siehe dazu die an diese Antwort angehängte Mitteilung von fred97.

* Die Arkustangensfunktion gehört zu den elementaren transzendenten Funktionen. Ihre Stetigkeit auf ganz [mm] \IR [/mm] i.a. darf daher angenommen werden ab dem Moment, wo sie eingeführt bzw. definiert wurde.


Gruß, Diophant


Bezug
                                
Bezug
Stetigkeit im Nullpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:10 Mo 19.02.2018
Autor: fred97


> Hallo,
>  
> > Hallo, vielen Dank für die schnelle Antwort!
>  >
>  > "den (zweiten) Funktionsterm einmal scharf ansehen und

> dann
>  > ggf. noch begründen, weshalb dieser auf ganz [mm]\IR[/mm]

> stetig
>  > ist"

>  >
>  > Wäre dies noch anders zu beweisen als über die

> Stetigkeit
>  > der Umkehrfunktion?

>  
> Hier möchte ich noch mal etwas ausholen. Wie fred97 schon
> geschrieben hat ist es unklar, wie nun das Argument des
> Arkustangens aussehen soll.
>  
> Ich bin von folgender Version ausgegangen:
>  
> [mm]f(x)=\begin{cases}0 &\ ,\ \textrm{für x=0}\\ 2x*arctan\left( \frac{1}{2}x\right) &\ ,\ \textrm{sonst}\end{cases} [/mm]
>  
> Und zwar vermutlich, weil ich nicht scharf genug hingesehen
> habe. Bei dieser Version ist anschaulich klar, dass der
> zweite Funktionsterm an der Stelle x=0 den Wert 0 annimmt
> und überall stetig ist
>  
> - a) weil die Komposition stetiger Funktionen selbst wieder
> stetig ist und
>  - b) (so man das unbedingt erwähnen möchte*) wegen der
> Stetigkeit der Umkehrfunktion.
>  
> Wesentlich mehr Sinn ergibt die andere Interpretation, die
> FRED vorgeschlagen hat, nämlich
>  
> [mm]f(x)=\begin{cases}0 &\ ,\ \textrm{für x=0}\\ 2x*arctan\left( \frac{1}{2x}\right) &\ ,\ \textrm{sonst}\end{cases}[/mm]
>  
> Hier ist schon auch offensichtlich, dass das ganze stetig
> ist, aber für diesen Fall könnte man
>  
> [mm]\lim_{x\rightarrow{0}}2x*arctan\left( \frac{1}{2x}\right)=0[/mm]
>  
> wenigstens noch kurz begründen.
>  
> * Die Arkustangensfunktion gehört zu den elementaren
> transzendenten Funktionen. Ihre Stetigkeit auf ganz [mm]\IR[/mm]
> i.a. darf daher angenommen werden ab dem Moment, wo sie
> eingeführt bzw. definiert wurde.

Hallo Diophant,

für die Frage nach der Stetigkeit der obigen Funktion f in x=0 (egal in welcher Auffasung) genügt die Beschränktheit der Arkustangensfunktion.


>  
>
> Gruß, Diophant
>  


Bezug
                                        
Bezug
Stetigkeit im Nullpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Mo 19.02.2018
Autor: Diophant

Moin FRED,

> Hallo Diophant,

>

> für die Frage nach der Stetigkeit der obigen Funktion f in
> x=0 (egal in welcher Auffasung) genügt die Beschränktheit
> der Arkustangensfunktion.

ah, ok. Klar war mir das schon, aber ich bin immer etwas unsicher darin, wie gründlich (also in welcher Tiefe) an der Uni solche Sachverhalte begründet werden müssen und welche Anforderungen an die Schreibweisen gestellt werden.

Danke für den  Hinweis!


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de