www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit in Punkt
Stetigkeit in Punkt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit in Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Sa 02.02.2013
Autor: AntonK

Aufgabe
[mm] f(x,y)=\bruch{xy}{x^2+y^2} [/mm] für [mm] x^2+y^2>0 [/mm]

Für [mm] x^2+y^2=0 [/mm] ist der Funktionswert 0.

Zeigen Sie, dass f im Wert (0,0) nicht stetig ist.

Hallo Leute,

habe erstmal die Ableitungen gebildet:

[mm] f_x(x,y)=y*\bruch{y^2-x^2}{(x^2+y^2)^2} [/mm]

und

[mm] f_y(x,y)=x*\bruch{x^2-y^2}{(x^2+y^2)^2} [/mm]

Für die Stetigkeit muss ja gelten:

[mm] f(\limes_{n\rightarrow\infty} x_n)=\limes_{n\rightarrow\infty}f(x_n) [/mm]

Wähle als [mm] x_n=\bruch{1}{n} [/mm] denn [mm] \limes_{n\rightarrow\infty} \bruch{1}{n} [/mm] = 0

Das heißt ich habe einmal:

[mm] f_x(\bruch{1}{n},0)=0*\bruch{0^2-(\bruch{1}{n})^2}{((\bruch{1}{n})^2+0^2)^2}=0 [/mm]

und [mm] f_x(\bruch{1}{n},0)=f(0,0)=0 [/mm]

Sprich beides ist 0, da ich ja bei der ersten Gleichung sowieso 0 herausbekomme, da y=0.

Und für [mm] f_y(x,y) [/mm] kommt ja dann auch in beiden Fällen 0 heraus, warum ist die Funktion dann nicht stetig?

Muss ich das gleiche auch nochmal für:

[mm] f_x(0,\bruch{1}{n}) [/mm] und [mm] f_x(0,0) [/mm]

machen?

Weil wenn das so wäre, dann ist es mir klar, denn:

[mm] f_x(0,\bruch{1}{n}) [/mm] = n

[mm] f_x(0,0)=0 [/mm]

Das eine läuft also gegen unendlich und das andere bleibt 0, deswegen nicht stetig in (0,0).

Müsste ich das also so auch noch betrachten?

Danke schonmal!

        
Bezug
Stetigkeit in Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Sa 02.02.2013
Autor: fred97


> [mm]f(x,y)=\bruch{xy}{x^2+y^2}[/mm] für [mm]x^2+y^2>0[/mm]
>  
> Für [mm]x^2+y^2=0[/mm] ist der Funktionswert 0.
>  
> Zeigen Sie, dass f im Wert (0,0) nicht stetig ist.
>  Hallo Leute,
>  
> habe erstmal die Ableitungen gebildet:


Wozu???  Es geht doch darum, ob f in (0,0) stetig ist oder nicht !!!



>  
> [mm]f_x(x,y)=y*\bruch{y^2-x^2}{(x^2+y^2)^2}[/mm]
>  
> und
>  
> [mm]f_y(x,y)=x*\bruch{x^2-y^2}{(x^2+y^2)^2}[/mm]
>  
> Für die Stetigkeit muss ja gelten:
>  
> [mm]f(\limes_{n\rightarrow\infty} x_n)=\limes_{n\rightarrow\infty}f(x_n)[/mm]
>  
> Wähle als [mm]x_n=\bruch{1}{n}[/mm] denn
> [mm]\limes_{n\rightarrow\infty} \bruch{1}{n}[/mm] = 0
>  
> Das heißt ich habe einmal:
>  
> [mm]f_x(\bruch{1}{n},0)=0*\bruch{0^2-(\bruch{1}{n})^2}{((\bruch{1}{n})^2+0^2)^2}=0[/mm]
>  
> und [mm]f_x(\bruch{1}{n},0)=f(0,0)=0[/mm]
>  
> Sprich beides ist 0, da ich ja bei der ersten Gleichung
> sowieso 0 herausbekomme, da y=0.
>  
> Und für [mm]f_y(x,y)[/mm] kommt ja dann auch in beiden Fällen 0
> heraus, warum ist die Funktion dann nicht stetig?
>  
> Muss ich das gleiche auch nochmal für:
>  
> [mm]f_x(0,\bruch{1}{n})[/mm] und [mm]f_x(0,0)[/mm]
>  
> machen?
>
> Weil wenn das so wäre, dann ist es mir klar, denn:
>  
> [mm]f_x(0,\bruch{1}{n})[/mm] = n
>  
> [mm]f_x(0,0)=0[/mm]
>  
> Das eine läuft also gegen unendlich und das andere bleibt
> 0, deswegen nicht stetig in (0,0).
>  
> Müsste ich das also so auch noch betrachten?


Die partiellen Ableitungen kannst Du vergessen !


Betrachte mal f(x,x) für x [mm] \ne [/mm] 0

FRED

>  
> Danke schonmal!


Bezug
                
Bezug
Stetigkeit in Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 Sa 02.02.2013
Autor: AntonK

Ach, ich Depp, es geht ja darum, dass die Funktion nicht stetig ist und nicht die Ableitung.

[mm] \limes_{n\rightarrow\infty} f(\bruch{1}{n},\bruch{1}{n})=\limes_{n\rightarrow\infty} \bruch{(\bruch{1}{n})^2}{2(\bruch{1}{n})^2}=\bruch{1}{2} [/mm]

[mm] f(\limes_{n\rightarrow\infty} \bruch{1}{n}, \limes_{n\rightarrow\infty} \bruch{1}{n})=f(0,0)=0 [/mm]

Und da 0 ungleich 0,5, ist das ganze nicht stetig.

Ist das so korrekt?

Bezug
                        
Bezug
Stetigkeit in Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Sa 02.02.2013
Autor: fred97


> Ach, ich Depp, es geht ja darum, dass die Funktion nicht
> stetig ist und nicht die Ableitung.
>  
> [mm]\limes_{n\rightarrow\infty} f(\bruch{1}{n},\bruch{1}{n})=\limes_{n\rightarrow\infty} \bruch{(\bruch{1}{n})^2}{2(\bruch{1}{n})^2}=\bruch{1}{2}[/mm]
>  
> [mm]f(\limes_{n\rightarrow\infty} \bruch{1}{n}, \limes_{n\rightarrow\infty} \bruch{1}{n})=f(0,0)=0[/mm]
>  
> Und da 0 ungleich 0,5, ist das ganze nicht stetig.
>  
> Ist das so korrekt?

Ja

FRED


Bezug
        
Bezug
Stetigkeit in Punkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Sa 02.02.2013
Autor: AntonK

Ok, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de