www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Stetigkeit normierter Raum
Stetigkeit normierter Raum < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit normierter Raum: Lösungstipps
Status: (Frage) beantwortet Status 
Datum: 10:54 Mi 29.10.2008
Autor: strange_w

Aufgabe
Seien (X, [mm] \parallel*\parallel_x) [/mm] und [mm] (Y,\parallel*\parallel_y) [/mm] normierte Räume.
Zeigen sie, dass ein linearer Operator [mm] A:x\to [/mm] y genau dann stetig ist, wenn er beschränkt ist.

Ich weiß nicht, wie man da zeigen kann!

Was ich bisher weiß ist, was eine Norm ist, aber selbst mit der Darstellung der normierten Räume kann ich nicht so viel anfangen.
Auch weiß ich nicht, wie man die Beschränktheit nachweist.

ich brauche die Aufgabe bis morgen Abend und hoffe, ihr könnt mir irgendwie helfen. ist echt wichtig!

MfG


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Stetigkeit normierter Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Mi 29.10.2008
Autor: M.Rex

Hallo und [willkommenmr]

> Seien (X, [mm]\parallel*\parallel_x)[/mm] und
> [mm](Y,\parallel*\parallel_y)[/mm] normierte Räume.
> Zeigen sie, dass ein linearer Operator [mm]A:x\to[/mm] y genau dann
> stetig ist, wenn er beschränkt ist.
>  Ich weiß nicht, wie man da zeigen kann!
>
> Was ich bisher weiß ist, was eine Norm ist, aber selbst mit
> der Darstellung der normierten Räume kann ich nicht so viel
> anfangen.

[mm] (X,\parallel*\parallel_x) [/mm] ist der normierte (Vektor)Raum X mit der Norm [mm] \parallel*\parallel [/mm] auf x, das bedeutet der Index _x .

> Auch weiß ich nicht, wie man die Beschränktheit nachweist.

Du zeigst, dass es eine Schranke gibt (obere oder untere)

>
> ich brauche die Aufgabe bis morgen Abend und hoffe, ihr
> könnt mir irgendwie helfen. ist echt wichtig!

Jetzt sollst du ja zeigen:  

der Lineare Operator [mm] A:x\to{y} [/mm] ist stetig
[mm] \gdw [/mm]
der Lineare Operator [mm] A:x\to{y} [/mm] ist beschränkt.

Die Äquivalenz beinhaltet zwei Beweise:
1)
der Lineare Operator [mm] A:x\to{y} [/mm] ist stetig
[mm] \Rightarrow [/mm]
der Lineare Operator [mm] A:x\to{y} [/mm] ist beschränkt.

Und
2)der Lineare Operator [mm] A:x\to{y} [/mm] ist Beschränkt
[mm] \Rightarrow [/mm]
der Lineare Operator [mm] A:x\to{y} [/mm] ist stetig.

Jetzt versuche mal, diese Beweise anzufangen.
Dazu schreib mal auf, was es bedeutet, dass
der Lineare Operator [mm] A:x\to{y} [/mm] stetig ist, und versuche dann eine Folgerungskette aufzustellen, die bei der Existenz einer Schranke landet.


Marius

Bezug
        
Bezug
Stetigkeit normierter Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Mi 29.10.2008
Autor: fred97

Was Beschränktheit bedeutet habe ich dir hier

https://matheraum.de/read?t=460321

geschrieben.

Nimm an, A sei stetig, aber nicht beschränkt. Dann gibt es eine Folge [mm] (x_n) [/mm] in X mit [mm] ||x_n|| [/mm] = 1 und [mm] ||Ax_n|| [/mm] > n.

Setze [mm] z_n [/mm] = [mm] (1/n)x_n. [/mm]  Dann gilt [mm] z_n [/mm] --> 0 und [mm] ||Az_n|| [/mm] > 1 . Das ist aber ein Widerspruch, denn A ist stetig, also auch [mm] Az_n [/mm] --> 0

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de