www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Stetigkeit normierter Vektorra
Stetigkeit normierter Vektorra < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit normierter Vektorra: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:19 Mi 27.04.2011
Autor: kushkush

Aufgabe
Sei [mm] $f:X\rightarrow [/mm] V$ eine stetige Abbildung von einem metrischen Raum $X$ in einen normierten Vektorraum V. Man zeige, dass dann auch [mm] $||f||:X\rightarrow \IR$ [/mm] stetig ist.


Hallo,

Es ist zu zeigen dass die Abbildung [mm] $||.||:V\rightarrow \IR$ [/mm] stetig ist, weil die Komposition von stetigen Abbildungen (X mit $||f||$ auf [mm] $\IR$ [/mm] = X mit $f$ auf $V$= V mit $||.||$ auf [mm] $\IR$) [/mm] selber wieder stetig ist.

Stetigkeitsnachweis: Es ist ein Punkt $p [mm] \in [/mm] V$ und [mm] $\epsilon \in \IR_{>0}$ [/mm] beliebig. Mit [mm] $\delta [/mm] := [mm] \epsilon$ [/mm] muss für $v [mm] \in [/mm] V$ mit [mm] $||p-v||<\delta$ [/mm] gelten, dass:

$| ||p||- ||v|| | [mm] \le [/mm] ||p-v|| < [mm] \delta [/mm] = [mm] \epsilon$ [/mm]

Nun eine Fallunterscheidung:

(1): $||p||-||v|| [mm] \ge [/mm] 0$: dann ist es OK.

(2): $||p||-||v||<0 : | ||p||-||v|| = ||v|| - ||p|| [mm] \le [/mm] ||v-p|| = ||p-v||$



Reicht das? Was kann man besser macheN?



Ich habe diese Fragen in keinem anderen Forum gestellt.



Danke und Gruss
kushkush

        
Bezug
Stetigkeit normierter Vektorra: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Do 28.04.2011
Autor: fred97


> Sei [mm]f:X\rightarrow V[/mm] eine stetige Abbildung von einem
> metrischen Raum [mm]X[/mm] in einen normierten Vektorraum V. Man
> zeige, dass dann auch [mm]||f||:X\rightarrow \IR[/mm] stetig ist.
>  Hallo,
>  
> Es ist zu zeigen dass die Abbildung [mm]||.||:V\rightarrow \IR[/mm]
> stetig ist, weil die Komposition von stetigen Abbildungen
> (X mit [mm]||f||[/mm] auf [mm]\IR[/mm] = X mit [mm]f[/mm] auf [mm]V[/mm]= V mit [mm]||.||[/mm] auf [mm]\IR[/mm])
> selber wieder stetig ist.
>
> Stetigkeitsnachweis: Es ist ein Punkt [mm]p \in V[/mm] und [mm]\epsilon \in \IR_{>0}[/mm]
> beliebig. Mit [mm]\delta := \epsilon[/mm] muss für [mm]v \in V[/mm] mit
> [mm]||p-v||<\delta[/mm] gelten, dass:
>
> [mm]| ||p||- ||v|| | \le ||p-v|| < \delta = \epsilon[/mm]
>  
> Nun eine Fallunterscheidung:
>
> (1): [mm]||p||-||v|| \ge 0[/mm]: dann ist es OK.
>  
> (2): [mm]||p||-||v||<0 : | ||p||-||v|| = ||v|| - ||p|| \le ||v-p|| = ||p-v||[/mm]
>  
>
>
> Reicht das?

Nein, nie und nimmer !  In Deinen obigen Betrachtungen kommt nirgendwo die Abbildung f vor. Gibt Dir das nicht zu denken ??


> Was kann man besser macheN?

Alles.

Wir setzen zunächst $g:=||f||$. Und nehmen uns x, [mm] x_0 \in [/mm] X her:

    (*)    [mm] $|g(x)-g(x_0)| [/mm] =  | ~||f(x)||- [mm] ||f(x_0)|| [/mm] ~| [mm] \le ||f(x)-f(x_0)||$ [/mm]

(das [mm] "\le" [/mm] kommt von der umgekehrten Dreiecksungleichung)

So, nun zeige mal mit (*), dass g in [mm] x_0 [/mm] stetig ist.

FRED

>  
>
>
> Ich habe diese Fragen in keinem anderen Forum gestellt.
>  
>
>
> Danke und Gruss
>  kushkush


Bezug
                
Bezug
Stetigkeit normierter Vektorra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Do 28.04.2011
Autor: kushkush

Hallo!

> zeige Stetigkeit!



[mm] $\forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0, [mm] \delta [/mm] := [mm] \epsilon [/mm] ,  [mm] ||f(x)-f(x_{0})||<\delta \forall \delta$: [/mm]

[mm] $|g(x)-g(x_{0})\le ||f(x)-f(x_{0})<\delta [/mm] = [mm] \epsilon$ [/mm]


Richtig?



> FRED

Danke!!



Gruss
kushkush

Bezug
                        
Bezug
Stetigkeit normierter Vektorra: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Fr 29.04.2011
Autor: fred97


> Hallo!
>  
> > zeige Stetigkeit!
>  
>
>
> [mm]\forall \epsilon > 0 \exists \delta > 0, \delta := \epsilon , ||f(x)-f(x_{0})||<\delta \forall \delta[/mm]:
>
> [mm]|g(x)-g(x_{0})\le ||f(x)-f(x_{0})<\delta = \epsilon[/mm]
>  
>
> Richtig?

Nein. Zunächst: ich hab schon viele Fragen von Dir gesehen (und viele davon beantwortet) und typische kushkush- Lösungsversuche, so dass ich sagen muß:

            Du bist schlampig und keinen Millimeter lernfähig !!

So bringst Du es in der Mathematik nicht weit, auch nicht auf den Weihnachtsinseln.

Zum letzten mal zeige ich Dir, wie man eine Lösung sauber und korrekt formuliert:

Sei [mm] x_0 \in [/mm] V und [mm] \varepsilon [/mm] > 0. Weil f in [mm] x_0 [/mm] stetig ist, gibt es ein [mm] \delta [/mm] >0 mit:

                          [mm] $||f(x)-f(x_0)|| [/mm] < [mm] \varepsilon$ [/mm]  für jedes x [mm] \in [/mm] V mit [mm] $|x-x_0|< \delta$. [/mm]

Mit obiger Ungl. (*) folgt dann:

                          [mm] $|g(x)-g(x_0)|< \varepsilon$ [/mm]  für jedes x [mm] \in [/mm] V mit [mm] $|x-x_0|< \delta$. [/mm]

Damit ist g in [mm] x_0 [/mm] stetig.

FRED

>  
>
>
> > FRED
>  Danke!!
>  
>
>
> Gruss
>  kushkush


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de