www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit sinus
Stetigkeit sinus < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit sinus: Idee
Status: (Frage) beantwortet Status 
Datum: 21:19 Sa 06.01.2007
Autor: KommissarLachs

Aufgabe
a) [mm] f(x)=x^{2}*sin(\bruch{1}{x)}) [/mm] für [mm] x\not=0 [/mm] bzw.
   f(x)=0 für x=0
   an der Stelle a= 0 auf Stetigkeit überprüfen
[mm] b)f(x)=x*sin(\bruch{1}{x)}) [/mm] für [mm] x\not=0 [/mm] bzw.
  f(x)=0 für x=0
ebenfalls bei a=0 auf Stetigkeit prüfen
[mm] c)f(x)=sin(\bruch{1}{x)}) [/mm]
  zu zeigen: f ist an der Stelle x=0 nicht stetig fortsetzbar

Hallo,

hab einige Problem mit dieser Aufgabe. Wenn ich mit der Definition von Stetigkeit arbeite (also: [mm] \limes_{n\rightarrow\infty} f(x_{n}) [/mm] = f(a) ) dann hab ich das Problem, dass 0 im Nenner steht. Was mach ich da?
Wäre nett wenn mir jemand nen Tipp geben könnte. Danke schon mal im Voraus.

MfG, KommissarLachs

        
Bezug
Stetigkeit sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Sa 06.01.2007
Autor: Zwerglein

Hi, KommissarLachs,

> a) [mm]f(x)=x^{2}*sin(\bruch{1}{x)})[/mm] für [mm]x\not=0[/mm] bzw.
>     f(x)=0 für x=0
>     an der Stelle a= 0 auf Stetigkeit überprüfen
>  [mm]b)f(x)=x*sin(\bruch{1}{x)})[/mm] für [mm]x\not=0[/mm] bzw.
>    f(x)=0 für x=0
>  ebenfalls bei a=0 auf Stetigkeit prüfen
>  [mm]c)f(x)=sin(\bruch{1}{x)})[/mm]
> zu zeigen: f ist an der Stelle x=0 nicht stetig
> fortsetzbar

>  
> hab einige Problem mit dieser Aufgabe. Wenn ich mit der
> Definition von Stetigkeit arbeite (also:
> [mm]\limes_{n\rightarrow\infty} f(x_{n})[/mm] = f(a) ) dann hab ich
> das Problem, dass 0 im Nenner steht. Was mach ich da?

Zwar existiert der Grenzwert für  [mm] sin(\bruch{1}{x}) [/mm] für x [mm] \to [/mm] 0 nicht (Divergenz; daher ist die 3. Funktion auch nicht stetig ergänzbar),
es gilt aber wenigstens:

-1 [mm] \le sin(\bruch{1}{x}) \le [/mm] 1  

Demnach ist der Term beschränkt.
Und da [mm] x^{2} \to [/mm] 0 geht für x [mm] \to [/mm] 0 (1. Beispiel), geht auch f(x) [mm] \to [/mm] 0; daher stetig.
Analog das 2. Beispiel.

(Vermute übrigens, dass die Aufgabe noch weitergeführt wird. Zumindest die erste Funktion kenn' ich nämlich als typisches Beispiel einer Funktion, die an einer Stelle differenzierbar, aber nicht STETIG differenzierbar ist!)

mfG!
Zwerglein

Bezug
                
Bezug
Stetigkeit sinus: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 So 07.01.2007
Autor: KommissarLachs

Danke dir. Bei Differenzierbarkeit sind wir zwar noch nicht, aber das wird wohl bald losgehen.

MfG, KommissarLachs

Bezug
                
Bezug
Stetigkeit sinus: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:47 So 07.01.2007
Autor: KommissarLachs

Kann man das eigentlich nach einem Satz so machen, oder ist das einfach so?

MfG, KommissarLachs

Bezug
                        
Bezug
Stetigkeit sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 07.01.2007
Autor: Zwerglein

Hi, Kommissar,

> Kann man das eigentlich nach einem Satz so machen, oder ist
> das einfach so?

Den zugehörigen Satz findest Du z.B. hier:
[]http://de.wikipedia.org/wiki/Grenzwert_(Funktion)

Ist |f(x)| [mm] \le [/mm] |g(x)| und ist [mm] \limes_{x\rightarrow p} [/mm] g(x) = 0, so ist auch [mm] \limes_{x\rightarrow p} [/mm] f(x) = 0.

Der Satz wird im Bereich der Schule aber eher selten gebraucht!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de