Stetigkeit und differenzierbar < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:31 Mi 05.07.2006 | Autor: | Sandy857 |
Aufgabe | Die Funktion f : [mm] \IR^2\to\IR [/mm] sei definiert durch
[mm] f(x,y)=\begin{cases} \bruch{xy(x^2-y^2)}{x^2+y^2}, & \mbox{für } (x,y)\not=0, \\ 0, & \mbox{für }(x,y)=0\end{cases}
[/mm]
Zu zeigen:
1.) [mm] f\in C^1(\IR^2)
[/mm]
2.) [mm] \partial_{xy}f(0,0)=1 [/mm] und [mm] \partial_{yx}f(0,0)=-1 [/mm] |
Ich bereite mich gerade auf meine Klausur vor. Mit so einem Aufgabentyp komme ich einfach nicht klar.
Zum Beispiel müsste doch laut Satz von Schwarz eigentlich gelten, dass [mm] \partial_{xy}f(0,0)=\partial_{yx}f(0,0) [/mm] ist, oder?
Ich wäre für eure Hilfe sehr dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:31 Mi 05.07.2006 | Autor: | FrankM |
Hallo Sandy,
die Stetigkeit rechnest du am bestens einfach direkt mit der Definition nach. Der einzige Punkt, der Probleme machen kann ist 0. Der Funktionwsert an der Stelle 0 ist nach Definition 0, du musst also zeigen, dass es für alle [mm] \epsilon [/mm] >0 ein [mm] \delta [/mm] >0 gibt, so dass für alle (x,y) mit [mm] \|(x,y)\|< \delta [/mm] gilt [mm] |f(x,y)|<\epsilon. [/mm] Sei also [mm] \epsilon>0. [/mm] Setze [mm] \delta=\sqrt{\epsilon}. [/mm] Dann gilt für alle [mm] |(x,y)|<\delta, [/mm] also [mm] x^2+y^2<\delta^2 [/mm] und damit [mm] x^2<\delta^2 [/mm] und [mm] y^2<\delta^2 [/mm] und [mm] x^2-y^2<\delta^2. [/mm] Dann gilt:
[mm] |f(x,y)|<\bruch{\delta^2 \cdot \delta^2}{\delta^2}=\delta^2=\epsilon [/mm] also ist die Funktion stetig. Die Stetigkeit der Ableitung kannst du genauso zeigen. Bei der zweiten Aufgabe, kannst du den Satz von Schwarz nicht nutzen, da er nur gilt, wenn die partiellen Ableitungen stetig sind. Du weißt aber nur, dass die ersten partiellen Ableitungen stetig sind, die zweiten sind es in dieser Aufgabe nicht.
Gruß
Frank
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:07 Mi 05.07.2006 | Autor: | Sandy857 |
Vielen Dank schon mal. Bis hier habe ich es jetzt verstanden, doch wie würde ich jetzt bei der zweiten Teilaufgabe weiter vorgehen?
Wie schon gesagt habe ich mit dieser Aufgabenstellung so meine Probleme.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:59 Fr 07.07.2006 | Autor: | Sandy857 |
Es soll nicht unhöflich klingen, aber ich bitte um schnellstmögliche Antwort, da ich morgen die Klausur schreibe.
Vielen Dank für eure Mühe schon mal im Voraus!
|
|
|
|
|
Hallo Sandy857,
Du hast ja bei 1. die Ableitungen berechnet um zu zeigen das die Funktion aus [mm] C^1 [/mm] ist. Die mußt Du eben bei 2. nochmal ableiten.
viele grüße
mathemaduenn
|
|
|
|