www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit und partielle Diffb
Stetigkeit und partielle Diffb < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit und partielle Diffb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Mo 04.09.2006
Autor: pusteblume86

Aufgabe
[mm] f:R^2->R [/mm] definiert durch  f(x,y) = [mm] \bruch{xy}{\wurzel{x^2+y^2}} [/mm] für [mm] (x,y)\not=(0,0) [/mm]

Ist f im Punkt stetig, partiell und total differenzierbar?

Ich habe eine Lösung zu dieser Aufgabe, aber da versteh ich das alles vorne und hinten nicht.

Die arbeiten da mit Polarkoordinaten und stellen die Funktion als
f(x,y)= [mm] \bruch{r^2*cos\varphi*sin\varphi}{r} [/mm] = [mm] \bruch{r}{2}*sin(2\varphi) [/mm]

naja, da hab ich jetzt mal drüber weggeschaut, weil ich überhaupt nicht weiß was das soll..Vielleicht kann es mir ja jemand erklären..


Wie kann ich denn jetzt da die Stetigkeit z.B zeigen?

Also mit dem [mm] \varepsilon,\delta [/mm] - kriterium würd ich es jetzt versuchen:

[mm] \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] >0 [mm] \forall x\in R^2: [/mm]
|(x,y)-(0,0)| < [mm] \delta \Rightarrow [/mm]  |f(x,y)-0|<  [mm] \varepsilon [/mm]

aber da komm ich jetzt irgendwie nicht weiter,,,,kann mir jemand helfen?

Um die partielle Differenzierbarkeit zu prüfen, kann ich einfach die partiellen Ableitungen bilden oder den Differenzenquotienten.

[mm] \limes_{h\rightarrow 0} =\bruch{f(x+ h e_i) - f(x)}{h} [/mm]

i=1, h [mm] e_i [/mm] = (1,0) [mm] \Rightarrow [/mm]

[mm] \limes_{h\rightarrow0} [/mm]

[mm] \bruch{\bruch{(x+h)y}{\wurzel{(x+h)^2+y^2}}-\bruch{xy}{\wurzel{x^2+y^2}}}{h} [/mm] = [mm] \partial_x [/mm] f(x,y)


soweit erstmal richtig?
So , da es nun um den Punkt (0,0) geht ist es also nun:
[mm] \bruch{\bruch{(0+h)0}{\wurzel{(0+h)^2+0^2}}-\bruch{0*0}{\wurzel{0^2+0^2}}}{h} [/mm] =

[mm] \bruch{\bruch{0}{\wurzel{h^2}}-\bruch{0}{\wurzel{0}}}{h} [/mm] (mhm, da habe ich jetzt aber an einer stelle durch 0 geteilt..kann nicht sein..Egal , weiter^^^^: = 0
damit wäre es da nicht partiell diffbar, weil ich durch 0 hätte teilen müssen richtig??

        
Bezug
Stetigkeit und partielle Diffb: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Di 05.09.2006
Autor: mathiash

Hallo und guten Morgen,

> [mm]f:R^2->R[/mm] definiert durch  f(x,y) =
> [mm]\bruch{xy}{\wurzel{x^2+y^2}}[/mm] für [mm](x,y)\not=(0,0)[/mm]
>  
> Ist f im Punkt stetig, partiell und total differenzierbar?
>  Ich habe eine Lösung zu dieser Aufgabe, aber da versteh
> ich das alles vorne und hinten nicht.
>  
> Die arbeiten da mit Polarkoordinaten und stellen die
> Funktion als
> f(x,y)= [mm]\bruch{r^2*cos\varphi*sin\varphi}{r}[/mm] =
> [mm]\bruch{r}{2}*sin(2\varphi)[/mm]
>  
> naja, da hab ich jetzt mal drüber weggeschaut, weil ich
> überhaupt nicht weiß was das soll..Vielleicht kann es mir
> ja jemand erklären..
>  
>
> Wie kann ich denn jetzt da die Stetigkeit z.B zeigen?
>  

nun, es ist zB [mm] f(x,y)=\frac{g(x,y)}{h(x,y)} [/mm] mit [mm] g(x,y)=x\cdot [/mm] y usw., dann reicht es, die Stetigkeit der Funktionen g und h nachzuweisen und
allgemein zu zeigen, dass für solche stetigen g und h auch [mm] f=\frac{g}{h} [/mm] stetig ist (auf [mm] D:=D(g)\cap D(h)\cap\{(x,y)|h(x,y)\neq 0\} [/mm] ).

Dann wird für diese Einzelschritte das Prüfen des [mm] \epsilon [/mm] - [mm] \delta [/mm] - Kriteriums auch einfacher.

> Also mit dem [mm]\varepsilon,\delta[/mm] - kriterium würd ich es
> jetzt versuchen:
>  
> [mm]\forall \varepsilon[/mm] > 0 [mm]\exists \delta[/mm] >0 [mm]\forall x\in R^2:[/mm]
>  
> |(x,y)-(0,0)| < [mm]\delta \Rightarrow[/mm]  |f(x,y)-0|<  
> [mm]\varepsilon[/mm]
>  
> aber da komm ich jetzt irgendwie nicht weiter,,,,kann mir
> jemand helfen?
>  
> Um die partielle Differenzierbarkeit zu prüfen, kann ich
> einfach die partiellen Ableitungen bilden oder den
> Differenzenquotienten.
>  
> [mm]\limes_{h\rightarrow 0} =\bruch{f(x+ h e_i) - f(x)}{h}[/mm]
>  
> i=1, h [mm]e_i[/mm] = (1,0) [mm]\Rightarrow[/mm]
>  
> [mm]\limes_{h\rightarrow0}[/mm]
>  
> [mm]\bruch{\bruch{(x+h)y}{\wurzel{(x+h)^2+y^2}}-\bruch{xy}{\wurzel{x^2+y^2}}}{h}[/mm]
> = [mm]\partial_x[/mm] f(x,y)
>  

Wie ist denn f(0,0) definiert ? Das muss separat definiert sein, und beim Bilden des Differenzenquotienten musst Du diesen Wert dann einsetzen !

Gruss,

Mathias

> soweit erstmal richtig?
>  So , da es nun um den Punkt (0,0) geht ist es also nun:
> [mm]\bruch{\bruch{(0+h)0}{\wurzel{(0+h)^2+0^2}}-\bruch{0*0}{\wurzel{0^2+0^2}}}{h}[/mm]
> =
>
> [mm]\bruch{\bruch{0}{\wurzel{h^2}}-\bruch{0}{\wurzel{0}}}{h}[/mm]
> (mhm, da habe ich jetzt aber an einer stelle durch 0
> geteilt..kann nicht sein..Egal , weiter^^^^: = 0
>  damit wäre es da nicht partiell diffbar, weil ich durch 0
> hätte teilen müssen richtig??
>  

Bezug
                
Bezug
Stetigkeit und partielle Diffb: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 Di 05.09.2006
Autor: pusteblume86

f(0,0):= 0


Bezug
                
Bezug
Stetigkeit und partielle Diffb: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:26 Di 05.09.2006
Autor: pusteblume86

[mm] \limes_{h\rightarrow0} [/mm]
[mm] \bruch{\bruch{(x+h)y}{\wurzel{(x+h)^2+y^2}}-\bruch{xy}{\wurzel{x^2+y^2}}}{h} [/mm]

so da ja nun f(0,0):= 0

[mm] \limes_{h\rightarrow0} [/mm]

[mm] \bruch{\bruch{(0+h)0}{\wurzel{(0+h)^2+0^2}}-\bruch{0\cdot{}0}{\wurzel{0^2+0^2}}}{h} [/mm]

ist das denn dann erstma so richitg? dann würd ich aber ja durch null teilen...



Bezug
                        
Bezug
Stetigkeit und partielle Diffb: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 07.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de