www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - Stichprobe auf Gesamtheit
Stichprobe auf Gesamtheit < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stichprobe auf Gesamtheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Do 03.05.2012
Autor: rotegirte

Aufgabe
Auf die Frage, welche Partei sie wählen würden, wenn am kommenden Von n=1000 Wählern votierten X=380 für die SPD. Welchen Stimmenanteil kann die SPD mit der Sicherheitswahrscheinlichkeit 95% in der Gesamtheit aller Wähler erwarten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

ich habe die Vorgehensweise im Prinzip schon verstanden, nur einen bestimmten Schritt nicht nachvollziehen:

Die Grenzen des Konfidenzintervalls [mm][p_{min};p_{max}][/mm] sind mit folgenden Gleichungen bestimmt (mit [mm]1,96\sigma[/mm] für eine 95%-ige Sicherheit):

[mm]np_{min} + 1,96 * \wurzel{np_{min} * (1-p_{min})} = X[/mm]

[mm]np_{max} - 1,96 * \wurzel{np_{max} * (1-p_{max})} = X[/mm]

Uns wurde beigebracht, dass man nun lediglich quadrieren muss, um eine quadratische Gleichung zu erhalten, die man leicht auflösen kann:

[mm]1,96^2 * n * p * (1-p) = (x-np)^2[/mm]

Mein Problem dabei ist, dass scheinbar durch die Quadrierung [mm]p=p_{min}[/mm] oder [mm]p=p_{max}[/mm] gilt.

Das heißt, dass man kurzzeitig mit nur einer Variablen p rechnet, und deren Lösungen [mm]p_{1}=p_{min}[/mm] bzw. [mm]p_{2}=p_{max}[/mm] repräsentieren.

Ich bin mir nicht sicher, ob ich mich zu umständlich ausdrücke, aber ich verstehe genau den Gedanken zwischen Quadrierung der Ausgangsgleichungen und anschließender Lösung der pq-Formel nicht. Meiner Meinung nach, hätte man doch auch nach Quadrierung weiterhin zwei verschiedene Gleichungen, da man [mm]p_{min}[/mm] und [mm]p_{max}[/mm] doch gar nicht kennt, und beide doch verschieden sind?

        
Bezug
Stichprobe auf Gesamtheit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Fr 04.05.2012
Autor: Diophant

Hallo,

also wenn ich das richtig verstanden habe, dann versuchst du hier,ein Konfidenzintervall für die unbekannte Wahrscheinlichkeit p einer Binomialverteilung zu bestimmen.

Ich habe da zunächst mal eine grundsätzliche Verständnisschwierigkeit: ich kenne das nur so, dass die Grenzen per Ungleichung bestimmt sind:

[mm] \bruch{X}{n}-\bruch{c}{n}*\wurzel{np(1-p)}\le{p}\le{\bruch{X}{n}+\bruch{c}{n}*\wurzel{np(1-p)}} [/mm]

Und das habt ihr irgendwie verwurstelt zu den beiden Gleichungen. Tatsache bleibt aber: man schätzt hier eine Wahrscheinlichkeit, und aus eben diesem Grund kann man

[mm] p_{min}=p_{max}=p [/mm]

setzen, so wie ihr es getan habt.

Ich bekomme als Intervallgrenzen

[mm] 0.3499\le{p}\le{0.4101} [/mm]

Dies nur zur Kontrolle.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de