www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stimmen meine Berechnungen?
Stimmen meine Berechnungen? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stimmen meine Berechnungen?: Integralrechnung
Status: (Frage) beantwortet Status 
Datum: 20:59 Do 14.11.2013
Autor: MathematikLosser

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Der Punkt P auf dem Graphen der Funktion f wird mit dem ursprung O geradlinig verbunden. Wie groß ist der Inhalt der zwischen der Strecke OP und dem Graphen von f liegenden Fläche?
f(x)= x² , P=(1/f(1))

Ich habe wie folgt gerechnet: P=(1/1)
O müsste (0/0) sein=> OP= y=x
Die Fläche zwischen beiden ist dann
[mm] \bruch{x^3}{3}-\bruch{x^2}{2} [/mm]
[mm] =\bruch{1}{3}-\bruch{1}{2} [/mm]
A=-0,16E²
=/0,16/

        
Bezug
Stimmen meine Berechnungen?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Do 14.11.2013
Autor: Diophant

Hallo,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Der Punkt P auf dem Graphen der Funktion f wird mit dem
> ursprung O geradlinig verbunden. Wie groß ist der Inhalt
> der zwischen der Strecke OP und dem Graphen von f liegenden
> Fläche?
> f(x)= x² , P=(1/f(1))

>

> Ich habe wie folgt gerechnet: P=(1/1)
> O müsste (0/0) sein=> OP= y=x
> Die Fläche zwischen beiden ist dann
> [mm]\bruch{x^3}{3}-\bruch{x^2}{2}[/mm]
> [mm]=\bruch{1}{3}-\bruch{1}{2}[/mm]
> A=-0,16E²
> =/0,16/

Könntest du uns in diesem Zusammenhang mal kurz erläutern, was wir uns unter einem negativen Flächeninhalt vorstellen dürfen? Aus der Fernsehserie Star Trek ist mir der Begriff der Anti-Zeit geläufig, aber mit negativen Inhalten habe ich noch immer so meine Probleme... ;-)

Spaß beiseite: im großen und ganzen bist du das richtig angegangen, aber es ist ein richtig dicker Flüchtigkeitsfehler in deiner Rechnung. Die Fläche zwischen zwei Schaubildern, die sich nicht schneiden und zwei senkrechten Geraden bekommt man immer noch, indem man die Differenz Oberkurve minus Unterkurve integriert.

Die Richtige Rechnung lautet also:

[mm] \int_{0}^{1}{(x-x^2) dx}=\left[\bruch{x^2}{2}-\bruch{x^3}{3}\right]_0^1 [/mm]

Rechne das nochmal aus. Gib außerdem das Ergebnis als Bruch an. Ich bekomm ja so langsam Heulkrämpfe, wenn ich diese inflationäre Verwendung von Dezimalzahlen in der Analysis sehe.

Gruß, Diophant


 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de