www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Stirling-Zahlen 2.Art
Stirling-Zahlen 2.Art < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stirling-Zahlen 2.Art: Potenz einer Zahl
Status: (Frage) beantwortet Status 
Datum: 17:24 Mo 27.06.2005
Autor: dh_zm

Hallo,

komme wiedermal nicht weiter...

hier erstmal die aufgabe:



Beweisen Sie:
Stirling-Zahlen zweiter Art, Potenzen und fallende Faktorielle erfüllen die folgende Gleichung:

     $ [mm] n^m [/mm] =  [mm] \summe_{k=0}^{n} n^{\underline{k}} [/mm] * [mm] S_{m,k} [/mm] $




Wenn ich jetzt erstmal alles durch die jew. Definition ersetze:

     $ [mm] n^{\underline{k}} [/mm] = [mm] \bruch{n!}{(n-k)!} [/mm] = [mm] \vektor{n \\ k} [/mm] * k! $

und

     $ [mm] S_{m,k} [/mm] = [mm] \bruch{1}{k!} [/mm] * [mm] \summe_{l=0}^{k} (-1)^l [/mm] * [mm] \vektor{k \\ l} [/mm] * [mm] (k-l)^m [/mm] $

erhalte ich:

     $ [mm] \summe_{k=0}^{n} \vektor{n \\ k} [/mm] * (  [mm] \summe_{l=0}^{k} (-1)^l [/mm] * [mm] \vektor{k \\ l} [/mm] * [mm] (k-l)^m [/mm] ) $

aber wie um alles in der welt komme ich da auf

     $ [mm] n^m [/mm] $ ?



hoffe mir kann da jemand weiterhelfen...
daniel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stirling-Zahlen 2.Art: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Di 28.06.2005
Autor: Hanno

Hallo!

Versuche dir das Ganze doch einmal anschaulich klar zu machen:

Die Stirling-Zahl zweiter Art $S(n,k)$ gibt an, wie viele k-Partitionen einer n-Menge es gibt. Diese Anzahl kann man leicht mit der Anzahl der surjektiven Abbildungen von [mm] $[n]:=\{1,2,...,n\}$ [/mm] auf [mm] $[k]:=\{1,2,...,k\}$ [/mm] in Verbindung bringen. Suchen wir nämlich eine surjektive Abbildung, so müssen wir die $n$ Elemente der Bildmenge $[n]$ in $k$ Mengen partitionieren, die angeben, welche Elemente aus $[n]$ auf das gleiche Element in $[k]$ abgebildet werden. Dafür gibt es genau $S(n,k)$ Möglichkeiten. Nun wissen wir aber noch nicht, welche Gruppe von Elementen aus $[n]$ auf welches [mm] $k\in [/mm] [k]$ abgebildet wird - für diese Zuweisung gibt es nochmals $k!$ Möglichkeiten. D.h. also: Die Anzahl der surjektiven Abbildungen von $[n]$ auf $[k]$ beträgt [mm] $S(n,k)\cdot [/mm] k!$. Das ist doch mal was! Ich schreibe im Folgenden [mm] $s_{n,k}$ [/mm] für die Anzahl der surjektiven Abbildungen von $[n]$ auf $[k]$.

Erweitern wir in der dir gegebenen Formel die Summanden mit $k!$, so erhalten wir wegen [mm] $\frac{n^{\underline{k}}}{k!}=\vektor{n\\ k}$ [/mm] und - wie eben hergeleitet - [mm] $S(n,k)=s_{n,k}\cdot [/mm] k!$ die Summe

[mm] $\summe_{k=1}^{n} \vektor{n\\ k} s_{m,k}$ [/mm]

Betrachten wir nun die linke Seite, d.h. [mm]n^m[/mm]. Was gibt diese an? Klar: die Anzahl aller Abbildungen von [mm] $\[m\]$ [/mm] nach [mm] $\[n\]$. [/mm] Wir müssen also lediglich zeigen, dass die rechte Seite auch die Anzahl dieser Abbildungen zählt. Das können wir wie folgt einsehen: die Mächtigkeit des Bildes einer jeden Abbildung [mm] $f:\[m\]\to\[n\]$ [/mm] ist eindeutig bestimmt - nennen wir sie im Folgenden $k$, d.h. [mm] $|f(\[m\])|=k$. [/mm] Wie viele solcher Abbildungen gibt es? Nun, wir wissen, dass $f$ die Elemente von [mm] $\[m\]$ [/mm] auf genau $k$ verschiedene Elemente aus [mm] $\[n\]$ [/mm] abbildet - wählen wir diese doch erst einmal aus: dafür gibt es [mm] $\vektor{n\\ k}$ [/mm] Möglichkeiten. Nun müssen wir also noch die $m$ Elemente aus [mm] $\[m\]$ [/mm] surjektiv auf die $k$ Ausgewählten Elemente aus [mm] $\[n\]$ [/mm] abbilden. Wie viele Möglichkeiten gibt es dafür? Klar: genau [mm] $s_{m,k}$. [/mm] D.h. also, dass es genau [mm] $\vektor{n\\ k} s_{m,k}$ [/mm] Abbildungen $f:[m][mm] \to [/mm] [n]$ mit [mm] $\vert [/mm] f([m][mm] )\vert [/mm] =k$ gibt. Wie oben bereits erwähnt, hat jede Abbildung von [mm] $\[m\]$ [/mm] nach [mm] $\[n\]$ [/mm] eine eindeutig bestimmte Mächtigkeit ihrer Bildmenge, sodass wir durch Summation von k=1,2,...,n über [mm] $\vektor{n\\ k} s_{m,k}$ [/mm] die Gesamtzahl aller Abbildungen von [mm] $\[m\]$ [/mm] nach [mm] $\[n\]$, [/mm] also [mm] $n^m$, [/mm] erhalten. Ausgeschrieben bedeutet dies

[mm] $n^m [/mm] = [mm] \summe_{k=1}^{n} \vektor{n\\ k} s_{m,k}$, [/mm]

was zu zeigen war!


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de