Stochastik < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:51 Sa 11.09.2021 | Autor: | knorki7 |
Aufgabe | Ein Wirt hat die Möglichkeit, entweder ein Restaurant in der Stadt zu betreiben, das erfahrungsgemäß nach Abzug der Kosten für Pacht, Personal etc. einen täglichen Gewinn von 170 Euro pro Tag einbringt, oder ein Restaurant bei der Mittelstation des nahegelegten Bergs zu eröffnen. Hier ist ein Gewinn (nach Abzug der Kosten) von 500 Euro pro Tag bei gutem Wetter, 40 euro bei mäßigem Wetter und kein Gewinn bei schlechtem Wetter zu erwarten. Aufgrund von Wetterstudien dieser Region ist davon auszugehen, dass im Verlauf des Jahres im durchschnitt an einem von drei Tagen mit gutem Wetter und an drei von acht Tagen mit mäßigem Wetter zu rechnen ist.
a) Für welches Restaurant sollte sich der Wirt entscheiden?
b) Berechnen Sie die Standardabweichung und interpreteiern sie ihr ergebnis im sachzusammenhang
c) In einem Jahr ist zu erwarten, dass der Anteil der Tage mit schlechtem wetter größer ist, während nach wie vor an einem von drei tagen mit gutem wetter zu rechnen ist. Wie groß darf der Anteil an tagen mit schlechtem wetter sein, damit das restaurant mind. genauso viel gewinn abwirft, wie das restaurant in der stadt? |
Ich glaube, dass ich es soweit verstanden und auch richtig berechnet habe. Muss es allerdings vorstellen, würde daher lieber auf Nummer sicher gehen.
a) E(x) = 500* 1/3 + 40 * 3/8 + 0 * (1-1/3-3/8) = 181,67
b) o = [mm] sqrt[(500-181,67)^2 [/mm] * 1/3 + [mm] (40-181,67)^2 [/mm] * 3/8] = 203,23
c) 170 = 500 * 1/3 + 40 * 3/8 + 0 * x
das war mein erster Ansatz, aber mit 0*x macht das ja keinen Sinn.
Daher habe ich es so versucht:
170 <= 500 * 1/3 + 40*x
x >= 1/12
Heißt dann 1/3 gutes wetter, 1/12 mäßiges wetter und damit bleibt sozusagen als letzte größe noch 1-1/3-1/12 = 7/12 für das schlechte wetter, damit mindestens 170€ gewinn pro Tag bleiben.
Stimmt das soweit?!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:27 So 12.09.2021 | Autor: | statler |
Guten Morgen!
> Ein Wirt hat die Möglichkeit, entweder ein Restaurant in
> der Stadt zu betreiben, das erfahrungsgemäß nach Abzug
> der Kosten für Pacht, Personal etc. einen täglichen
> Gewinn von 170 Euro pro Tag einbringt, oder ein Restaurant
> bei der Mittelstation des nahegelegten Bergs zu eröffnen.
> Hier ist ein Gewinn (nach Abzug der Kosten) von 500 Euro
> pro Tag bei gutem Wetter, 40 euro bei mäßigem Wetter und
> kein Gewinn bei schlechtem Wetter zu erwarten. Aufgrund von
> Wetterstudien dieser Region ist davon auszugehen, dass im
> Verlauf des Jahres im durchschnitt an einem von drei Tagen
> mit gutem Wetter und an drei von acht Tagen mit mäßigem
> Wetter zu rechnen ist.
>
>
>
> a) Für welches Restaurant sollte sich der Wirt
> entscheiden?
>
> b) Berechnen Sie die Standardabweichung und interpreteiern
> sie ihr ergebnis im sachzusammenhang
>
> c) In einem Jahr ist zu erwarten, dass der Anteil der Tage
> mit schlechtem wetter größer ist, während nach wie vor
> an einem von drei tagen mit gutem wetter zu rechnen ist.
> Wie groß darf der Anteil an tagen mit schlechtem wetter
> sein, damit das restaurant mind. genauso viel gewinn
> abwirft, wie das restaurant in der stadt?
> Ich glaube, dass ich es soweit verstanden und auch richtig
> berechnet habe. Muss es allerdings vorstellen, würde daher
> lieber auf Nummer sicher gehen.
>
> a) E(x) = 500* 1/3 + 40 * 3/8 + 0 * (1-1/3-3/8) = 181,67
Der Antwortsatz: ....
>
> b) o = [mm]sqrt[(500-181,67)^2[/mm] * 1/3 + [mm](40-181,67)^2[/mm] * 3/8] =
> 203,23
Und wie interpretierst du das? Bemerken möchte ich, daß die Angaben unrealistisch sind, da der Gewinn immer [mm] $\ge$ [/mm] 0 ist. Das wird an einem Tag, an dem niemand kommt, eher nicht der Fall sein.
>
> c) 170 = 500 * 1/3 + 40 * 3/8 + 0 * x
> das war mein erster Ansatz, aber mit 0*x macht das ja
> keinen Sinn.
>
> Daher habe ich es so versucht:
>
> 170 <= 500 * 1/3 + 40*x
> x >= 1/12
>
> Heißt dann 1/3 gutes wetter, 1/12 mäßiges wetter und
> damit bleibt sozusagen als letzte größe noch 1-1/3-1/12 =
> 7/12 für das schlechte wetter, damit mindestens 170€
> gewinn pro Tag bleiben.
>
> Stimmt das soweit?!
Ja, aber ich hätte die Gleichung etwas anders hingeschrieben. Der Anteil der mäßigen und der schlechten Tage muß zusammen [mm] $\frac{2}{3}$ [/mm] sein, also ist die Gleichung
(wenn $x$ der Anteil der schlechten Tage ist)
[mm] $500*\frac{1}{3} [/mm] + [mm] 40*(\frac{2}{3} [/mm] - x) + 0*x [mm] \ge [/mm] 170$
Damit kriege ich $x [mm] \le \frac{7}{12}$
[/mm]
Gruß
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:39 Mo 13.09.2021 | Autor: | knorki7 |
Danke!!
|
|
|
|