www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Stochastik
Stochastik < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik: Mangelhafte Exemplare
Status: (Frage) beantwortet Status 
Datum: 15:47 Mo 12.11.2007
Autor: barsch

Aufgabe
In einem Verlag werden 10.000 Bücher gedruckt; pro Buch besteht eine Chance von [mm] 10^{-4}, [/mm] dass es sich um ein Mangelexemplar handelt.

Modellieren sie die zufällige Anzahl X der mangelhaften Bücher.

Hi,

so lautet 1:1 die Aufgabenstellung. Mich irritiert die Aufgabenstellung ein wenig.

Es werden 10.000 Bücher geruckt; jedes Buch hat die Chance [mm] 10^{-4}, [/mm] dass es mangelhaft ist.
Mit Chance, nehme ich an, ist die Wahrscheinlichkeit gemeint?! Aber wie soll ich das jetzt ausrechnen?

Muss ich das über den Erwartungswert machen?

Aber wie berechne ich das mit dem Erwartungswert?

Bin für jede Hilfe dankbar.

MfG barsch

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 12.11.2007
Autor: luis52

Hallo Barsch,

> In einem Verlag werden 10.000 Bücher gedruckt; pro Buch
> besteht eine Chance von [mm]10^{-4},[/mm] dass es sich um ein
> Mangelexemplar handelt.
>  
> Modellieren sie die zufällige Anzahl X der mangelhaften
> Bücher.
>  Hi,
>  
> so lautet 1:1 die Aufgabenstellung. Mich irritiert die
> Aufgabenstellung ein wenig.
>  
> Es werden 10.000 Bücher geruckt; jedes Buch hat die Chance
> [mm]10^{-4},[/mm] dass es mangelhaft ist.
> Mit Chance, nehme ich an, ist die Wahrscheinlichkeit
> gemeint?! Aber wie soll ich das jetzt ausrechnen?

Na, zunaechst ist die Anzahl X der Maengelexemplare
binomialverteilt mit $n=10000$ und $p=0.0001$. Da aber hier
n gross und p klein ist, kann man die Verteilung von X durch eine
Poissonverteilung mit [mm] $\lambda=np=1$ [/mm] approximieren.

lg Luis

Bezug
                
Bezug
Stochastik: Kurze Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:35 Mo 12.11.2007
Autor: barsch

Hi,

danke für die Hilfe.

Also die Poissonverteilung lautet:

[mm] P(k)=\bruch{\lambda^k}{k!}*e^{-\lambda} [/mm]

mit [mm] \lambda=np=1 [/mm] ergibt sich:

[mm] P(k)=\bruch{1}{k!}*e^{-1} [/mm]

Und k ist dann meine Variable. Ich dachte, man müsse einen konkreten Wert berechnen, scheint aber nicht der Fall zu sein?!

MfG barsch





Bezug
                        
Bezug
Stochastik: Modell
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 12.11.2007
Autor: Infinit

Hallo barsch,
bei dieser Aufgabe sollte kein Erwartungswert oder ähnliches gebildet werden, sondern das Wahrscheinlichkeitsmodell für das Auftreten fehlerbehafteter Bücher. Das Modell mit den Näherungen, di eingeführt werden, läuft eben auf eine Poisson-Verteilung raus. Mit dieser kannst Du dann natürlich weiterrechnen, aber das war hier nicht gefragt.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de