www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Stochastik
Stochastik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik: Kombinatorik
Status: (Frage) beantwortet Status 
Datum: 14:04 Mo 18.03.2013
Autor: mausieux

Hallo zusammen,

würde mich sehr freuen, wenn mir jemand bei nachstehender Aufgabe helfen könnte:

Stellt euch vor, 5 Jäger schießen gleichzeitig auf einen Schwarm Hasen. Der Schwarm besteht aus drei Hasen, Hase 1, Hase 2 und Hase 3. Alle Jäger treffen auch jeweils einen Hasen, dabei ist egal welchen und auch die Reihenfolge. Wichtig ist nur, dass die Gleichung k + m + n = 5 erfüllt ist. Hasen 1 wird k, Hasen 2 wird m und Hasen 3 wird n zugeordnet. Wieviele verschiedene Tupel der Form k + m + n = 5 existieren. Berechnet soll mithilfe einer kombinatorischen Grundfigur.

Wäre folgendes möglich?

5 - 1 + 3 über 3 = 7

Allerdings gibt es doch 21 Möglichkeiten, nämlich:

5,0,0
0,5,0
0,0,5
4,1,0
4,0,1
1,0,4
1,4,0
0,1,4
0,4,1
3,1,1
1,1,3
1,3,1
3,2,0
3,0,2
2,0,3
2,3,0
0,2,3
0,3,2
2,2,1
2,1,2
1,2,2

Wer kann mir helfen?

        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mo 18.03.2013
Autor: steppenhahn

Hallo,


> Hallo zusammen,
>  
> würde mich sehr freuen, wenn mir jemand bei nachstehender
> Aufgabe helfen könnte:
>  
> Stellt euch vor, 5 Jäger schießen gleichzeitig auf einen
> Schwarm Hasen. Der Schwarm besteht aus drei Hasen, Hase 1,
> Hase 2 und Hase 3. Alle Jäger treffen auch jeweils einen
> Hasen, dabei ist egal welchen und auch die Reihenfolge.
> Wichtig ist nur, dass die Gleichung k + m + n = 5 erfüllt
> ist. Hasen 1 wird k, Hasen 2 wird m und Hasen 3 wird n
> zugeordnet. Wieviele verschiedene Tupel der Form k + m + n
> = 5 existieren. Berechnet soll mithilfe einer
> kombinatorischen Grundfigur.
>  
> Wäre folgendes möglich?
>  
> 5 - 1 + 3 über 3 = 7

Du hast das falsch ausgerechnet, aber schon den richtigen Lösungsansatz.

Die k = 5 Jäger schießen "mit Wiederholung" (ein Hase kann mehrmals getroffen werden) und "ohne Beachtung der Reihenfolge" (die Jäger sind nicht unterscheidbar) auf die n = 3 Hasen.

D.h. du musst die Formel
[mm] $\begin{pmatrix}n+k-1\\k\end{pmatrix}$ [/mm]

benutzen (siehe []Kombination mit Wiederholung).

Dann kommst du auch auf dein Ergebnis von unten.


> Allerdings gibt es doch 21 Möglichkeiten, nämlich:
>  
> 5,0,0
>  0,5,0
>  0,0,5
>  4,1,0
>  4,0,1
>  1,0,4
>  1,4,0
>  0,1,4
>  0,4,1
>  3,1,1
>  1,1,3
>  1,3,1
>  3,2,0
>  3,0,2
>  2,0,3
>  2,3,0
>  0,2,3
>  0,3,2
>  2,2,1
>  2,1,2
>  1,2,2




Viele Grüße,
Stefan

Bezug
                
Bezug
Stochastik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Mo 18.03.2013
Autor: mausieux

Könnte ich auch mein Ergebnis mit 3 multiplizieren?

Wären dann noch Teilpunkte möglich?

Bezug
                        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Mo 18.03.2013
Autor: steppenhahn

Hallo,


> Könnte ich auch mein Ergebnis mit 3 multiplizieren?

Du hast das aber schon falsch ausgerechnet: Der Ansatz mit dem Binomialkoeffiziente ist gut (und gibt sicher einen Punkt), aber

5-1+3 über 3

ist NICHT 7, sondern 35.

----

Und wenn du nicht begründen kannst, warum du das jetzt mit 3 oder was auch immer für einer Zahl multiplizierst, gibt es darauf nicht mehr Punkte.

Viele Grüße,
Stefan

Bezug
                                
Bezug
Stochastik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mo 18.03.2013
Autor: mausieux

Stimmt, du hast Recht.

Da kommt ja 35 raus.

Hmm, ich habe aber zusätzlich alle Tupel aufgeführt und als Lösung 21 angegeben. Allerdings habe ich die 21 nicht mithilfe der kombinatorischen Figur errechnen können. Der Ansatz der kombinatorischen Figur war, bis auf den Zahlenfehöer, richtig.

Meinst du von 5 möglichen Punkten erhalte ich 1? Oder mehr?

Bezug
                                        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 18.03.2013
Autor: steppenhahn

Hallo,

> Hmm, ich habe aber zusätzlich alle Tupel aufgeführt und
> als Lösung 21 angegeben. Allerdings habe ich die 21 nicht
> mithilfe der kombinatorischen Figur errechnen können. Der
> Ansatz der kombinatorischen Figur war, bis auf den
> Zahlenfehöer, richtig.
>
> Meinst du von 5 möglichen Punkten erhalte ich 1? Oder
> mehr?

Hast du etwa grad eine Klausur geschrieben :-)

Ich weiß nicht, wie das bewertet wird und wie streng das gehandhabt wird. Die Aufgabenstellung lautet ja, diese kombinatorische Figur zu benutzen. Da du auf begründete Art und Weise das richtige Ergebnis durch Abzählen ermittelt hast und auch den richtigen Ansatz für die Figur hattest, würde ich von 3/5 Punkten ausgehen.


Viele Grüße,
Stefan

Bezug
                                                
Bezug
Stochastik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Mo 18.03.2013
Autor: mausieux

Ja, habe gerade Examensprüfung gehabt. Und bin mir bei einigen Aufgaben nicht sicher.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de