www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Stochastische Differentialglei
Stochastische Differentialglei < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Differentialglei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Di 11.10.2005
Autor: BWL.Student

Hallo,
ich schreibe Diplomarbeit in Finanzierung und brauche den Lösungsweg von einer Differentialgleichung, die ich nicht selbst lösen kann. Oder vielleicht einen Ratschlag wo ich einen konkreten Tip zur Lösung finden könnte....
Ausgangsposition:
     [mm]dS(t)=\mu_SS(t)dt+\sigma_S S(t)dz_S[/mm]- Brownsche Bewegung;
[mm] dY(t)=\alpha(m-Y(t))dt+\sigma_Y dz_Y [/mm]-Ornstein-Uhlenbeck process , wobei [mm] dz_Sdz_Y=\rho_{SY} dt[/mm]
Gleichung:
[mm][mm] \frac{1}{2}\sigma_S^2S^2\frac{\partial^2 F}{\partial S^2}+\frac{\partial^2F}{\partial S \partial Y}S\rho_{SY}\sigma_S\sigma_Y+\frac{1}{2}\sigma_Y^2\frac{\partial^2 F}{\partial Y^2} +\frac{\partial F}{\partial S}(rS-Y)+\frac{\partial F}{\partial Y}\Big(\alpha(m-Y)-\lambda \sigma_Y\Big)+\frac{\partial F}{\partial t}=0[/mm]  [mm]  
Endbedingung:[mm]F(T,T)=S(T) [/mm]
Die Lösung dieser Gleichung soll
[mm]F(t,T)=S(t)e^{r (T-t)}-\left(m-\frac{\lambda \sigma_Y}{\alpha} \right)\left(\frac{e^{r (T-t)}-1}{r}\right)+\left(m-\frac{\lambda \sigma_Y}{\alpha}-Y(t) \right)\left(\frac{e^{r(T-t)}-e^{-\alpha(T-t)}}{\alpha+r}\right) [/mm] sein. Aber die Literatur verrät leider nicht, wo ich den Lösungsweg finden kann oder wie ich selbst anfangen kann....Ich wäre Euch endlos dankbar, wenn Ihr mir einen Tip geben könnt!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stochastische Differentialglei: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Sa 15.10.2005
Autor: angela.h.b.

Hallo,

leider kann ich Deine Aufgabe auch nicht lösen, zu viele Buchstaben, was mich bereits am Anfangen hindert...

Aber - ohne Dich demoralisieren zu wollen: meinst Du nicht, daß es reicht, wenn Du die Lösung in Deiner Arbeit zitierst? (Sofern Deine Literatur seriös ist.) Ich kann mir kaum vorstellen, daß Du den Weg zur Lösung liefern mußt in Deiner Diplomarbeit.

Was Du machen kannst und sogar solltest, schon zur eigenen Beruhigung:
Du hast die Dgl. und eine Lösung. Setz die Lösung in die Dgl. ein, und prüfe, ob das Richtige herauskommt. Dann weißt Du, daß die präsentierte Lösung wirklich eine Lösung ist.

Im Prinzip ist es wurscht, wenn Du eine Lösung durch Raten findest, wenn sie nur stimmt.

Gruß von Angela

Bezug
                
Bezug
Stochastische Differentialglei: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:51 So 16.10.2005
Autor: BWL.Student

Hallo,
danke für den Tip, Du hast grundsätzlich recht. Aber ich hab die Aufgabe endlich gelöst!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de