www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Störgliedansatz
Störgliedansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Störgliedansatz: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 11:37 Fr 24.04.2015
Autor: C11H15NO2

Aufgabe
y´´ + y = 2 cos(x) + x

Homogene:
y´´ + y = 0
Exponentialansatz y = [mm] e^{\lambda x} [/mm] liefert:
[mm] \lambda [/mm] 1,2 = [mm] \pm [/mm] j
Somit Lösung der homogenen:  C1 sin(x) + C2 cos(x)

Störglied g1(x): 2 cos(x) -> [mm] \beta=1 [/mm]    [ wegen [mm] cos(\beta [/mm] x) = cos(1x) ]
Der Lösungsansatz für 2 cos(x) ist:  A sin(x) + B cos(x)

Jedoch muss hier noch ein "x" hinzu multipliziert werden, da [mm] \beta [/mm] eine Lösung der Charakteristischen Gleichung
[mm] \lambda [/mm] 1,2 = [mm] \pm [/mm] j ist.

Das versteh ich nicht so recht.
Ist das so, weil es formell heißt: [mm] \lambda [/mm] 1,2 = [mm] \alpha \pm \beta [/mm] j
[mm] \alpha [/mm] = 0
[mm] \beta [/mm] = 1
???

Den Rest verstehe ich. Nur dieser Punkt ist mir unklar.

Danke im vorraus

        
Bezug
Störgliedansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Fr 24.04.2015
Autor: fred97


> y´´ + y = 2 cos(x) + x
>  Homogene:
>  y´´ + y = 0
>  Exponentialansatz y = [mm]e^{\lambda x}[/mm] liefert:
>  [mm]\lambda[/mm] 1,2 = [mm]\pm[/mm] j
>  Somit Lösung der homogenen:  C1 sin(x) + C2 cos(x)
>  
> Störglied g1(x): 2 cos(x) -> [mm]\beta=1[/mm]    [ wegen [mm]cos(\beta[/mm]
> x) = cos(1x) ]
>  Der Lösungsansatz für 2 cos(x) ist:  A sin(x) + B
> cos(x)
>  
> Jedoch muss hier noch ein "x" hinzu multipliziert werden,
> da [mm]\beta[/mm] eine Lösung der Charakteristischen Gleichung
>   [mm]\lambda[/mm] 1,2 = [mm]\pm[/mm] j ist.
>  
> Das versteh ich nicht so recht.
>  Ist das so, weil es formell heißt: [mm]\lambda[/mm] 1,2 = [mm]\alpha \pm \beta[/mm]
> j
>  [mm]\alpha[/mm] = 0
>  [mm]\beta[/mm] = 1
>  ???
>  
> Den Rest verstehe ich. Nur dieser Punkt ist mir unklar.
>  
> Danke im vorraus


Das zur homogenen Gl $y''+y=0$ gehörende char. Polynom ist

   [mm] p(z)=z^2+1. [/mm]

Wegen [mm] \beta=1 [/mm] ist $j [mm] \beta$ [/mm] eine einfache Nullstelle von p. Daher die Mult. mit x.

FRED

Bezug
                
Bezug
Störgliedansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Fr 24.04.2015
Autor: C11H15NO2

Wäre die homogene Gleichung y'' + 2y' + 4y = 0
lautet die charakteristische GLeichung [mm] z^2 [/mm] + 2z + 4 und [mm] \beta [/mm] somit 4
[ und [mm] \alpha [/mm] = 2] ?

Ok und wenn die beiden [mm] \beta [/mm] übereinstimmen dann mit x multi wegen einer einfacher Nullstelle

lg

Bezug
                        
Bezug
Störgliedansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Fr 24.04.2015
Autor: fred97


> Wäre die homogene Gleichung y'' + 2y' + 4y = 0
>  lautet die charakteristische GLeichung [mm]z^2[/mm] + 2z + 4 und
> [mm]\beta[/mm] somit 4
>  [ und [mm]\alpha[/mm] = 2] ?


Hä ?  Die Gl. [mm] z^2+2z+4=0 [/mm] hat die Lösungen

    [mm] $z_{1/2}=-1 \pm [/mm] j* [mm] \wurzel{3}$ [/mm]

Also: [mm] $\alpha=-1$ [/mm] und [mm] $\beta= \pm [/mm] j* [mm] \wurzel{3}$ [/mm]



>  
> Ok und wenn die beiden [mm]\beta[/mm] übereinstimmen dann mit x
> multi wegen einer einfacher Nullstelle

?????? Was meinst Du denn damit ?

FRED

>  
> lg


Bezug
                                
Bezug
Störgliedansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Fr 24.04.2015
Autor: C11H15NO2

Ok dann hab ichs falsch verstanden...

Ich denke, man muss bei der Aufgabe die [mm] \beta [/mm] vergleichen.
Das erste [mm] \beta [/mm] ist aus der Lösung von [mm] \lambda [/mm]
In dieser Aufgabe [mm] \lambda [/mm] 1,2 = [mm] \alpha \pm \beta [/mm] j  -> [mm] \beta [/mm] = 1

Das zweite [mm] \beta [/mm] entnehme ich dem Störglied 2 [mm] cos(\beta [/mm] x) -> [mm] \beta [/mm] = 1

Da diese beiden [mm] \beta [/mm] übereinstimmen multipliziere ich ein "x" dazu

Ist das richtig?

Bezug
                                        
Bezug
Störgliedansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Fr 24.04.2015
Autor: fred97


> Ok dann hab ichs falsch verstanden...
>  
> Ich denke, man muss bei der Aufgabe die [mm]\beta[/mm] vergleichen.

Hä ???


>  Das erste [mm]\beta[/mm] ist aus der Lösung von [mm]\lambda[/mm]
>  In dieser Aufgabe [mm]\lambda[/mm] 1,2 = [mm]\alpha \pm \beta[/mm] j  ->

> [mm]\beta[/mm] = 1
>  
> Das zweite [mm]\beta[/mm] entnehme ich dem Störglied 2 [mm]cos(\beta[/mm] x)
> -> [mm]\beta[/mm] = 1
>  
> Da diese beiden [mm]\beta[/mm] übereinstimmen multipliziere ich ein
> "x" dazu
>  
> Ist das richtig?

Nein.

Zieh Dir das

[mm] http://www-math.upb.de/~mathkit/Inhalte/DGLen/data/manifest10/Lsg_inhomDGL_2_Ord_konst_Koeff.html [/mm]

mal in aller Ruhe rein.

FRED


Bezug
                                                
Bezug
Störgliedansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Sa 25.04.2015
Autor: C11H15NO2

Ah okay. Jetzt hab ichs

Danke
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de