www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Strömungslehre
Strömungslehre < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Strömungslehre: max. Höhe einer Fontäne
Status: (Frage) beantwortet Status 
Datum: 00:07 Do 22.02.2007
Autor: wwwest

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Hier gibst du bitte die direkten Links zu diesen Fragen an.]


Aufgabe
  Strömungslehre - maximale Höhe einer Fontäne berechnen
Hallo,

ich habe diese Aufgabe vor einigen Tagen auf www.chemieonline gepostet, meine Aufgabe findet dort jedoch keine ernsthafte Beachtung und hoffe ihr könnt mir helfen.

Aufgabe:
Auf dem Ruinenberg oberhalb des Schlosses Sanssouci befindet sich ein offener Wasserspeicher für die Wasserversorgung des Schlosses und des Parks.
Der Boden des Wasserspeichers liegt 56m über dem Schloss und dem Park.

1. Welcher Wasserdruck stand Friedrich II. bei einem Energieverlust von 50 Prozent durch Rohreibung im Schloss zur Verfügung?

2. 15 Prozent der Gesamtenergie stehen für den Betrieb der großen Fontäne im Park zur Verfügung. Mit welcher Geschwindigkeit tritt das Wasser aus der Düse der Fontäne, wenn sich dort die runde Rohrleitung d = 8 cm auf d = 3 cm verjüngt?

3. Welche maximale Höhe erreicht das Wasser, wenn die große Fontäne in Betrieb ist?


Die Reibungsverluste sollen nicht berücksichtigt werden und wir gehen davon aus, dass sich der Behälter niemals entleeren kann, weil der Behälter in unserer Annahme unendlich groß ist.



h = 56 m
g = 9,81 [mm] \bruch{m}{s²} [/mm]
[mm] \rho_{Wasser} [/mm] = 1000 [mm] \bruch{kg}{m³} [/mm]

[mm] p_{stat} [/mm] = [mm] \rho \* [/mm]  g [mm] \* [/mm]  h
[mm] p_{stat} [/mm] = 549360 [mm] \bruch{N}{m²} [/mm]

[mm] \eta [/mm] = [mm] \bruch{p_{ab}}{p_{zu}} [/mm]
[mm] \eta [/mm] = [mm] \bruch{p_{Schloss}}{p_{stat.}} [/mm]
umgestellt:
[mm] p_{Schloss} [/mm] = [mm] p_{stat.} [/mm] * eta
[mm] p_{Schloss} [/mm] = 549360 N/m² * 0,5

Ergebnis zu 1.): Druck,Schloss = 274680 N/m²


Strömungsgeschwindigkeit in der Rohrleitung: [mm] v_{1} [/mm]
[mm] v_{1} [/mm]  =  [mm] \wurzel{ 2 * g * h } [/mm]
[mm] v_{1} [/mm]  =  [mm] \wurzel{( 2 * 9,81 \bruch{m}{s²} * 56 m)} [/mm]
[mm] v_{1} [/mm]  = 33,15 [mm] \bruch{m}{s} [/mm]


zu 2.)
[mm] p_{15%} [/mm] = [mm] p_{Gesamt} \* \eta [/mm]
[mm] p_{15%} [/mm] = 549360  [mm] \bruch{N}{m²} \* [/mm] 0,15
[mm] p_{15%} [/mm] = 82404  [mm] \bruch{N}{m²} [/mm]


Strömungsgeschwindigkeit in der Düse ( verengt ): [mm] v_{2} [/mm]
[mm] A_{1} \* v_{1} [/mm] = [mm] A_{2} \* v_{2} [/mm]
umgestellt:
[mm] v_{2} [/mm] = [mm] \bruch{(A_{1} \* v_{1})}{A_{2}} [/mm]
[mm] v_{2} [/mm] = [mm] \bruch{d_{1}}{d_{2}})² [/mm] * v,1
[mm] v_{2} [/mm] = [mm] (\bruch{0,08 m}{0,03 m})² [/mm] * 33,15 [mm] \bruch{m}{s} [/mm]

Ergebnis zu 2.) [mm] v_{2} [/mm] = 235,733333 [mm] \bruch{m}{s} [/mm]
- dieser Wert erscheint mir sehr hoch, weil er erheblich Einfluss auf den Druck p,2 ausübt.
Ist dieser wert richtig?

Energieerhaltungssatz:
1/rho [mm] \* [/mm] m  [mm] \* p_{1} [/mm] + [mm] \bruch{1}{2} \* [/mm] m [mm] \* v_{1}² [/mm] =

umgestellt:
[mm] p_{2} [/mm] = p,1 + rho/2 * v,1² - rho/2 * [mm] v_{2}² [/mm]
[mm] p_{2} [/mm] = p,1 + rho/2 * ( v,1² - v,2² )
[mm] p_{2} [/mm] = 82404 kg * m /(m² * s²) + 1000 kg / 2 m³ * ............
[mm] p_{2} [/mm] = 82404 kg * m /(m² * s²) + 1000 kg / 2 m³ * ............
[mm] p_{2} [/mm] = 82404 kg * m /(m² * s²) - 27235641 kg * m / (m² * s²)
[mm] p_{2} [/mm] = - 27153237 kg * m / (m² * s²)
- dieses Ergebnis macht mir Sorgen!

Wie kann ich jetzt die maximale Höhe der Fontäne berechnen?

Ich bitte höflichst um engagierte Hilfe!



        
Bezug
Strömungslehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:45 Do 22.02.2007
Autor: leduart

Hallo
Fuer mich ist die Frage so nicht loesbar.
1. Energieverlust ist nicht Druckverlust. Solange nix stroemt, ist der Druck im Schloss=Druck weit weg.
das zu den 50% Energieverlust.
es koennte so gemeint sein, dass die kinetische Energie die das Wasser beim Schloss noch hat 50% der Energie ist die es ohne Rohrleitung hat. Energie =Druck*Querschnitt*Weg.
gibt es da bei euch noch irgendwelcher Vereinbarungen ?
Gruss leduart

Bezug
                
Bezug
Strömungslehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Do 22.02.2007
Autor: wwwest

Hallo leduart,

zur Aufgabe habe ich momentan leider keine weiteren Angaben.

ich möchte gern erfahren, ob die Tendenz ( Richtung ) meiner Rechnungsweise einen Sinn ergibt, ( in irgendeiner Weise ).

Deinen Hinweis zur Energie:
E = p [mm] \* [/mm] A [mm] \* [/mm] l
kann ich leider nicht sinnvoll unterbringen, kannst du mir dazu etwas mehr berichten?

Mit freundlichen Grüßen
Frank

Bezug
        
Bezug
Strömungslehre: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Do 22.02.2007
Autor: Moritz88

Wie kann ich jetzt die maximale Höhe der Fontäne berechnen?

[mm] h=v*t-0,5g*t^2 [/mm]

t=v/g

Bezug
                
Bezug
Strömungslehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Fr 23.02.2007
Autor: wwwest

Hallo Moritz88,

zunächst vielen Dank für deinen Beitrag,
aber wie kommst du auf diese Gleichung?

$ [mm] h=v\cdot{}t-0,5g\cdot{}t^2 [/mm] $

Kannst du mir dazu eine Herleitung beschreiben?



$ [mm] t_{1}=\bruch{v}{g} [/mm] $

$ [mm] t_{1} [/mm] = [mm] \bruch{v_A,1}{g} [/mm] $

$ [mm] t_{1} [/mm] = [mm] \bruch{33,15 \bruch{m}{s}}{9,81 \bruch{m}{s^2}} [/mm] $

$ [mm] t_{1} [/mm] = 3,38 s $


zunächst vielen Dank für deinen Beitrag,
aber wie kommst du auf diese Gleichung?

$ [mm] h=v\cdot{}t-0,5g\cdot{}t^2 [/mm] $

Kannst du mir dazu eine Herleitung beschreiben?

$ [mm] t_{2} [/mm] = [mm] \bruch{v}{g} [/mm] $

$ [mm] t_{2} [/mm] = [mm] \bruch{v_A,2}{g} [/mm] $

$ [mm] t_{2} [/mm] = [mm] \bruch{235,7333 \bruch{m}{s}}{9,81 \bruch{m}{s^2}} [/mm] $

$ [mm] t_{2} [/mm] = 24,03 s $



$ [mm] h_{1} =v\cdot{}t-0,5g\cdot{}t^2 [/mm] $

$ [mm] h_{1} [/mm] = 33,15 [mm] \bruch{m}{s}\cdot{} [/mm] 3,38 s - 0,5 [mm] \cdot [/mm] 9,81 [mm] \bruch{m}{s^2} \cdot{}3,38^2 s^2 [/mm] $

$ [mm] h_{1} [/mm] = 56,007 m $



$ [mm] h_{2} =v\cdot{}t-0,5g\cdot{}t^2 [/mm] $

$ [mm] h_{2} [/mm] =235,7333 [mm] \bruch{m}{s}\cdot{} [/mm] 24,03 s - 0,5 [mm] \cdot [/mm] 9,81 [mm] \bruch{m}{s^2} \cdot{}24,03^2 s^2 [/mm] $

$ [mm] h_{2} [/mm] = 2832,29 m $


Es macht vermutlich nur dann Sinn mit deiner Gleichung zu rechnen,
wenn mit der Austrittsgeschwindigkeit $ [mm] v_{A,2} [/mm] $ gerechnet wird.
Die errechneten Ergebnisse meinen etwas anderes!

Dennoch habe ich den Eindruck auf dem richtigen weg zu sein.

Mit freundlichen Grüßen
wwwest

Bezug
                        
Bezug
Strömungslehre: senkrechter "Wurf"
Status: (Antwort) fertig Status 
Datum: 00:32 Sa 24.02.2007
Autor: Loddar

Hallo wwwest!


Bei  der o.g. Formel handelt es sich um die formel für den senkrechten Wurf (siehe auch []hier).

Dabei wird die nach oben gerichtete gleichförmige Bewegung mit der Anfangsgeschwindigkeit [mm] $v_0$ [/mm] überlagert mit der nach unten gerichteten (und damit der Schwerkraft entsprechenden) gleichmäßig beschleunigten Bewegung:

nach oben:  [mm] $s_{\text{oben}} [/mm] \ = \ [mm] h_1 [/mm] \ = \ [mm] v_0*t$ [/mm]

nach unten:  [mm] $s_{\text{unten}} [/mm] \ = \ [mm] \bruch{1}{2}*a*t^2 [/mm] \ = \ [mm] \bruch{1}{2}*g*t^2$ [/mm]


Durch das Minuszeichen bei der Überlagerung wird die entgegengesetzte Wirkung beider Bewegungen berücksichtigt:

$h(t) \ = \ [mm] s_{\text{oben}} [/mm] \ [mm] \red{-} [/mm] \ [mm] s_{\text{unten}} [/mm] \ = \ [mm] v_0*t-\bruch{1}{2}*g*t^2$ [/mm]


Nun klar(er)?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de