www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Strong maximum principle
Strong maximum principle < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Strong maximum principle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Do 09.08.2012
Autor: kalor

Hallo!

Wenn ich eine offene Menge $O$ habe, die beschränkt sei und eine Funktion [mm] $u\in C^2(O)\cap C(\overline{O})$, [/mm] welche harmonisch auf $O$ ist. Nehmen wir an, dass ich gezeigt habe, dass wenn $O$ zusammenhängend ist und es ein Punkt [mm] $z\in [/mm] O$ gibt mit

[mm] $$u(z)=\max_{\overline{O}}u$$ [/mm]

dann ist u konstant auf $O$. Wieso folgt nun für nicht zusammenhängendes $O$, dass

[mm] $$\max_{\overline{O}}u=\max_{\partial O}u$$ [/mm]

Danke!

greetz

KaloR

        
Bezug
Strong maximum principle: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 09.08.2012
Autor: Teufel

Hi!

Kann man nicht einfach $O$ in seine Zusammenhangskomponenten zerlegen? Ich bin mir nicht ganz sicher, aber wenn sagen wir $O=X [mm] \cup [/mm] Y$ eine disjunkte Zerlegung ist mit $X,Y$ offen und zusammenhängend, dann gilt doch folgendes:

Wenn das Maximum auf X angenommen wird, dann ist $u$ auf $X$ konstant, da $X$ zusammenhängend ist. Dann nimmt $u$ das Maximum aber auch auf dem Rand von $O$ an, weil $u$ ja dann auch auf [mm] $\partial [/mm] X$ das Maximum annimmt (und [mm] $\partial [/mm] X [mm] \subset \partial [/mm] O$).

Und wenn $u$ das Maximum auf dem Rand von $X$ annimmt, ist eh nichts zu zeigen.

Analog mit $Y$.

Und das Argument kann man natürlich für noch mehr Mengen hochziehen. Man muss nur begründen, dass man $O$ immer so schön zerlegen kann. Oder dürft ihr davon ausgehen?

Bezug
                
Bezug
Strong maximum principle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 So 19.08.2012
Autor: kalor

Hallo Teufel

Kurze Frage habe ich noch.

> Hi!
>  
> Kann man nicht einfach [mm]O[/mm] in seine Zusammenhangskomponenten
> zerlegen? Ich bin mir nicht ganz sicher, aber wenn sagen
> wir [mm]O=X \cup Y[/mm] eine disjunkte Zerlegung ist mit [mm]X,Y[/mm] offen
> und zusammenhängend, dann gilt doch folgendes:
>  
> Wenn das Maximum auf X angenommen wird, dann ist [mm]u[/mm] auf [mm]X[/mm]
> konstant, da [mm]X[/mm] zusammenhängend ist. Dann nimmt [mm]u[/mm] das
> Maximum aber auch auf dem Rand von [mm]O[/mm] an, weil [mm]u[/mm] ja dann
> auch auf [mm]\partial X[/mm] das Maximum annimmt (und [mm]\partial X \subset \partial O[/mm]).
>  

Wieso nimmt $u$ das Maximum auch auf [mm] $\pratial [/mm] X$ an? Ich weiss ja nur, dass $u$ konstant das Maximum ist innerhalb von $X$ .

Grüsse

hula

Bezug
                        
Bezug
Strong maximum principle: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 So 19.08.2012
Autor: Teufel

Hi!

Wenn $u$ konstant auf $X$, dann wird das Maximum überall auf X angenommen. Insbesondere eben auch auf dem Rand!

Bezug
                                
Bezug
Strong maximum principle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 So 19.08.2012
Autor: kalor

Hallo Teufel

Danke für deine Geduld. Ich wäre einverstanden, wenn $X$ abgeschlossen wäre. Aber es gilt doch : [mm] $\overline{X}=X\cup \partial [/mm] $X$.  Also im Normalfall gehört doch der Rand nicht zur Menge $X$ dazu! Oder sehe ich etwas falsch?

Bezug
                                        
Bezug
Strong maximum principle: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 So 19.08.2012
Autor: Teufel

Ah, ok. Also u ist ja auch auf ganz [mm] \overline{X} [/mm] stetig (nach Voraussetzung) und weil u auf X konstant ist, muss u aus Stetigkeitsgründen auch auch dem Rand nochmal den selben Wert annehmen (z.B. durch Folgenkriterium).

Du hast alles richtig gesehen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de