www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Stückweise Lineare Funktionen
Stückweise Lineare Funktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stückweise Lineare Funktionen: Starthilfe
Status: (Frage) beantwortet Status 
Datum: 14:46 Fr 22.02.2008
Autor: tissler

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo erstmal!
Ich will zunächst mich mal bedanken, dass sie so ein tolles Forum geschaffen haben!
Nun zu meiner Frage..
Ich habe keine konkrete Aufgabe, sondern würde gerne Wissen wie man Stückweise Lineare Funktionen berechnet! Ich hab das alles schon mal gemacht (und  konnte es auch) aber nun fehlt mir der Ansatz und ich kann ihn in meinem Mathebuch und im Internet nicht finden! Es wäre also nett, wenn ihr mir eine kleine Einstiegshilfe geben könntet!! Ich weiß es ist nicht eure Aufgabe, wie es auch in "cross posting" zu lesen ist mir die stückweisen linearen Funktionen zu erklären aber ich finde auch keine richtige Bsp. Aufgabe dafür, weil ich solange im Unterricht gefehlt hab.
Mfg.
Bene  

Hallo erstmal!
Ich will zunächst mich mal bedanken, dass sie so ein tolles Forum geschaffen haben!
Nun zu meiner Frage..
Ich habe keine konkrete Aufgabe, sondern würde gerne Wissen wie man Stückweise Lineare Funktionen berechnet! Ich hab das alles schon mal gemacht (und  konnte es auch) aber nun fehlt mir der Ansatz und ich kann ihn in meinem Mathebuch und im Internet nicht finden! Es wäre also nett, wenn ihr mir eine kleine Einstiegshilfe geben könntet!!
Mfg.
Bene

        
Bezug
Stückweise Lineare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Fr 22.02.2008
Autor: angela.h.b.


>  Nun zu meiner Frage..
> Ich habe keine konkrete Aufgabe, sondern würde gerne Wissen
> wie man Stückweise Lineare Funktionen berechnet!

Hallo,

[willkommenmr].

So in etwa müßten wir schon eine Aufgabenstellung wissen.

"Berechne die stückweise lineare Funktion" ist ja etwas vage.

Was hast Du gegeben?

Ich konnte es mir so vorstellen, daß Du z.B. Punkte

(1/2),  (3/4), (5/6) hast, und daß Du eine Funktion f aufstellen sollst, so, daß

f auf den Intervallen [1,3] und [3,5] linear ist und die obigen Punkte auf dem Graphen von f liegen.

Ist's das?

Dann rechnest Du die Gleichung der Geraden durch (1/2),  (3/4) aus und die der durch  (3/4), (5/6), und dann schreibst Du

[mm] f(x):=\begin{cases} 1.Geradengleichung, & \mbox{für } x\in [1,3) \mbox{ } \\ 2.Geradengleichung, & \mbox{für } x\in [3,5] \mbox{ } \end{cases} [/mm]

Gruß v. Angela


Bezug
                
Bezug
Stückweise Lineare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Fr 22.02.2008
Autor: tissler

Aufgabe
Untersuchen sie die Funktion f mit

(also ich kann das graphisch mit dieser klammer nicht aber ich denke, sie wissen was ich meine)

f(x)= - 0,5x² - 3x - 2 für x < -2
...  = | x + 1 |            für x>= -2

auf stetigkeit und zeichnen sie das Schaubild von f für x [mm] \in [/mm] [ -5; 2].

So ich hab hier mal ein Bsp. gefunden...

Seh ich das richtig das ich jetzt bei der ersten Funktion zunächst eine zahl die nah an -2 rankommt aber kleiner ist? also .. -2.0001 einsetze? und dann noch weitere Punkte die kleiner sind als 2?
Ich weiß es leider wirklich nicht mehr :s.
Danke schon mal für die Hilfe!

Bezug
                        
Bezug
Stückweise Lineare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Fr 22.02.2008
Autor: leduart

Hallo
> Untersuchen sie die Funktion f mit
>  
> (also ich kann das graphisch mit dieser klammer nicht aber
> ich denke, sie wissen was ich meine)
>  
> f(x)= - 0,5x² - 3x - 2 für x < -2

das ist ne Parabel, und hat nchts mit ner stückweise linearen Funktion zu tun.
Du kannst die Schnittpunkte mit der x- Achse bestimmen, und den Scheitel der Parabel.

> ...  = | x + 1 |            für x>= -2

Das ist eine Funktion, die man als 2 stückweise lineare fkt. schreiben kann:
|x+1|=x+1 für [mm] x+1\ge0, [/mm] d.h. für [mm] x\ge-1 [/mm]   |x+1|=-x-1 für x+1<0d.h. für x<-1
also hast du 2lineare fkt eine f(x)=x+1 für [mm] x\ge-1 [/mm] und die zweite f(x)=-x-1 für x<-1
d.h. du hast bei x=-1 eine Spitze, und f(-1)=0
stetig ist die funktion überall ausser x=-1 sowieso, bei x=-1 auch, weil man mit [mm] x_n [/mm] gegen -1 mit jeder Folge bei [mm] limf(x_n)=0 [/mm] landet. oder ne [mm] \delta [/mm] Umgebung mit [mm] \delta=\epsilon [/mm] haben kann, so dass aus |x-(-1)|< [mm] \delta [/mm] direkt folgt [mm] |f(x)-f(-1)|<\epsilon. [/mm]
also  

> auf stetigkeit und zeichnen sie das Schaubild von f für x
> [mm]\in[/mm] [ -5; 2].
>  So ich hab hier mal ein Bsp. gefunden...
>  
> Seh ich das richtig das ich jetzt bei der ersten Funktion
> zunächst eine zahl die nah an -2 rankommt aber kleiner ist?
> also .. -2.0001 einsetze? und dann noch weitere Punkte die
> kleiner sind als 2?

Durch Einsetzen von bestimmten Punkten kann man Stetigkeit nie beweisen.
Du muss nachsehen, wie ihr die Stetigkeit genau definiert habt.
Gruss leduart

Bezug
                                
Bezug
Stückweise Lineare Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 So 24.02.2008
Autor: tissler

Aufgabe
(LS11)
2)Zeichnen sie den Graphen der Funktion f. Lesen sie die Nullstellen der Funktion ab.

[mm] f(x)=\begin{cases} 0,5x+ 2, & \mbox{für } x< -3 \mbox{} \\ x+3,5, & \mbox{für } -3<+= x< -1,5 \mbox{ } \end{cases} [/mm]

die zwei reichen erstmal ..

Also ich habe in meinem Mathebuch mal eine Bsp. Aufgabe zur stückweisen linearen Funktion versucht zu berechnen aber leider gibts da immernoch ein paar unklarheiten..

was ich an der Bsp. Aufgabe nicht verstehe..:

Ich geh davon das ich mit 0,5 von 0,5 x die Steigung des ersten Teilgraphens habe!
Aber wofür steht die 2? ich dachte eig. ich ordne sie dem Y-Achsenabschnitt zu aber das scheint nicht der Fall zu sein, weil in der Lösung was anderes rauskommt.
und was ich auch nicht ganz nachvollziehen kann ist, warum ist bei dem zweiten Term ..für -3<+= x< -1,5 nicht auch ein gleichheitszeichen zur -1,5? Weil ich doch denke, dass wenn man den Graphen zeichnet er bis -1,5 geht?
Vielen Dank schon mal im Vorraus.
Bene

Bezug
                                        
Bezug
Stückweise Lineare Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 So 24.02.2008
Autor: angela.h.b.


> (LS11)
> 2)Zeichnen sie den Graphen der Funktion f. Lesen sie die
> Nullstellen der Funktion ab.
>  
> [mm]f(x)=\begin{cases} 0,5x+ 2, & \mbox{für } x< -3 \mbox{} \\ x+3,5, & \mbox{für } -3<+= x< -1,5 \mbox{ } \end{cases}[/mm]
>  
> die zwei reichen erstmal ..
>
> Also ich habe in meinem Mathebuch mal eine Bsp. Aufgabe zur
> stückweisen linearen Funktion versucht zu berechnen aber
> leider gibts da immernoch ein paar unklarheiten..
>  
> was ich an der Bsp. Aufgabe nicht verstehe..:
>  
> Ich geh davon das ich mit 0,5 von 0,5 x die Steigung des
> ersten Teilgraphens habe!
>  Aber wofür steht die 2? ich dachte eig. ich ordne sie dem
> Y-Achsenabschnitt zu aber das scheint nicht der Fall zu
> sein, weil in der Lösung was anderes rauskommt.

Hallo,

im Prinzip denkst Du richtig. So würde auch ich die Gerade erstmal ganz dünn einzeichnen.

Nun steht da aber: für x< -3.

Das bedeutet, daß die Funktion f nur von ganz links bis zum "Grenzpunkt" (-3 / 0.5) identisch mit dieser Geraden ist.

Ab diesem grenzpunkt gilt die zweite Funktionsvorschrift: f(x)=x+3,5

Zeichne auch diese Gerade zunächst ganz dünn ein. Ab dem Punkt (-3/0.5) bis zum Punkt (-1.5/ 2) ist die Funktion f dann identisch mit dieser Geraden.

Danach ist Schluß.

f ist nur für [mm] x\in [/mm] [-3, -1.5[ definiert. Das ist halt so festgelegt. Kann man machen. Warum nicht.


>  und was ich auch nicht ganz nachvollziehen kann ist, warum
> ist bei dem zweiten Term ..für -3<+= x< -1,5 nicht auch ein
> gleichheitszeichen zur -1,5? Weil ich doch denke, dass wenn
> man den Graphen zeichnet er bis -1,5 geht?

x=-1.5 ist die erste Stelle, die nicht mehr zum Def.bereich gehört. So ist die Funktion nun mal definiert.

Klar, ich könnte auch die Funktion

[mm] f(x)=\begin{cases} 0,5x+ 2, & \mbox{für } x< -3 \mbox{} \\ x+3,5, & \mbox{für } -3\le x\le -1,5 \mbox{ } \end{cases} [/mm]

definieren, wenn ich Lust hätte.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de