www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Stützebene
Stützebene < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stützebene: Frage zur Definition
Status: (Frage) beantwortet Status 
Datum: 00:56 So 13.11.2011
Autor: Loko

Hallo!

Ich muss bei meinen Aufgaben gerade mit Stützebenen hantieren und dabei hab ich mich gefragt wie das denn mit offenen Mengen ist.
Unsere Definition für eine Stützebene ist:
"Sei A [mm] \subseteq \IR^{n} [/mm] nicht leer. H ist eine Stützebene von A (in einem Punkt [mm] a_{0}), [/mm] wenn [mm] a_{0} \in [/mm] A [mm] \cap [/mm] H; und A ist enthalten in einer derabgeschlossenen Halbräume, die durch H festgelegt sind." (Aus dem Spanischen, deswegen klingt es ein wenig hakend.)
Hier haben wir jetzt aber nichts dazu gesagt, ob A abgeschlossen sein muss.
In allen Lemmata und Propositionen ist A dann aber immer abgeschlossen. Gibt es also überhaupt Stützebenen für offene Mengen?
Wenn ich mir beispielsweise (0,1) vorstelle, wo könnte da denn H an 1) treffen?

Viele Grüße! Ich hoff die Frage ist nicht zu dumm....

Loko

        
Bezug
Stützebene: Antwort
Status: (Antwort) fertig Status 
Datum: 05:48 So 13.11.2011
Autor: Al-Chwarizmi


> Hallo!
>  
> Ich muss bei meinen Aufgaben gerade mit Stützebenen
> hantieren und dabei hab ich mich gefragt wie das denn mit
> offenen Mengen ist.
>  Unsere Definition für eine Stützebene ist:
>  "Sei A [mm]\subseteq \IR^{n}[/mm] nicht leer. H ist eine
> Stützebene von A (in einem Punkt [mm]a_{0}),[/mm] wenn [mm]a_{0} \in[/mm] A
> [mm]\cap[/mm] H; und A ist enthalten in einer derabgeschlossenen
> Halbräume, die durch H festgelegt sind." (Aus dem
> Spanischen, deswegen klingt es ein wenig hakend.)
>  Hier haben wir jetzt aber nichts dazu gesagt, ob A
> abgeschlossen sein muss.
>  In allen Lemmata und Propositionen ist A dann aber immer
> abgeschlossen. Gibt es also überhaupt Stützebenen für
> offene Mengen?
>  Wenn ich mir beispielsweise (0,1) vorstelle, wo könnte da
> denn H an 1) treffen?
>  
> Viele Grüße! Ich hoff die Frage ist nicht zu dumm....
>  
> Loko


Guten Tag Loko,

da in der Definition verlangt wird, dass der Punkt [mm] a_0 [/mm] auch
zur Menge A gehören muss, zerschneidet H notwendiger-
weise jede auch noch so kleine Umgebung [mm] U(a_0) [/mm] in zwei
Teile, die diesseits bzw. jenseits von H liegen. Der Punkt [mm] a_0 [/mm]
kann also keine Umgebung besitzen, welche ganz zu A
gehört. Deshalb kann eine offene Menge gemäß dieser
Definition keine Stützebenen haben.

Man könnte sich allenfalls eine modifizierte Definition
vorstellen, bei welcher H Stützebene (im weiteren Sinn)
einer offenen Menge A ist, falls H Stützebene (in dem oben
definierten engeren Sinn) der abgeschlossenen Hülle von
A ist ...

LG   Al-Chw.


Bezug
                
Bezug
Stützebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 So 13.11.2011
Autor: Loko

Vielen vielen Dank! :)

Ja, so macht dann auch alles Sinn!!

Viele Grüße  
Loko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de