www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Subsitution
Subsitution < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Subsitution: Problem beim Integrieren
Status: (Frage) beantwortet Status 
Datum: 11:32 Di 22.02.2005
Autor: michaelw

Hallo,
ich habe den anderen Thread hierzu schon gelesen, leider konnte ich mir daraus nicht viel für mein Problem nehmen. Also, ich habe die Funktion:

f(x) = -3x / (1+x²)

und möchte diese integrieren. Ich nehme mal an das das mit Subsitution geht, hab aber echt keinen Plan wie, denn bei Substituion muss doch das was vor dem steht was ersetzt werden soll die Ableitung davon sein. Ich hab hier auch die Lösung von dem was raus kommen muss, und die sieht aus wie als wenn die Regel aus dem anderen Thread abgewendet wurde:

F(x) = 3/2 * ln (1+x²)

Eventuell ist ja Jemand von euch so nett und erklärt mir mal ganz idiotensicher wie man substituiert.

        
Bezug
Subsitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Di 22.02.2005
Autor: michaelw

Hab eben mal nachgesehn und eine wirklich gute Erklärung zur Substitution gefunden, ich glaube ich habe es verstanden, warte aber mal noch auf die Antwort von Hugo_Sanchez-Vicario.

Bezug
        
Bezug
Subsitution: Grundprinzip
Status: (Antwort) fertig Status 
Datum: 12:00 Di 22.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo Michael,

bei der Substitution ersetzt du x durch eine Hilfsvariable, die von x abhängt, meistens heißt diese neue Substitutions-Variable u.

Das dx im Integral muss dann dementsprechend ebenfalls durch u ausgedrückt werden.

Beispiel:
[mm] f(x)=\frac{-3x}{1+x^2} [/mm]
gesucht z.B.: [mm] \int_{x1}^{x2}f(x)dx [/mm]

Hier ist angebracht: [mm] u:=1+x^2, [/mm] so dass [mm] u'=\frac{du}{dx}=2x [/mm]
Nach dx umgestellt: [mm] dx=\frac{du}{2x} [/mm]

[mm] \int_{x1}^{x2}f(x)dx [/mm] = [mm] \int_{u1}^{u2}\frac{-3x}{u}\frac{du}{2x} [/mm] = [mm] -\frac{3}{2}\int_{u1}^{u2}\frac{1}{u}du [/mm] = [mm] -\frac{3}{2}[\ln(u)]_{u1}^{u2} [/mm] = [mm] -\frac{3}{2}[\ln(1+x^2)]_{x1}^{x2} [/mm]

Beim Ausrechnen ist noch zu beachten, dass du auch die Grenzen immer von x nach u transformieren musst (d.h. x1<->u1, x2<->u2). Es ist ein beliebter Fehler, die Integrationsgrenzen bei x1 und x2 zu belassen.

Eine idiotensichere Substitution im Sinne von 'es kommt am Ende was Vernünftiges raus' gibt es leider nicht. Es gibt gewisse Standardmethoden, z.B.
[mm] [\ln(f)]' [/mm] = [mm] \frac{f'}{f} [/mm]
so dass z.B. [mm] \int\frac{2x}{const.+x^2} [/mm] = [mm] \ln(const.+x^2) [/mm]

Aber eine allgemeingültige Methode, die immer funktioniert, ist mir nicht bekannt.

Hugo


Bezug
        
Bezug
Subsitution: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Di 22.02.2005
Autor: Fermat2k4

Du könntest es auch mal mit Partialbruchzerlegung versuchen!

Gruß

Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de