www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Substitution(sterm)
Substitution(sterm) < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution(sterm): Frage
Status: (Frage) beantwortet Status 
Datum: 21:30 Mo 14.03.2005
Autor: Smilodon

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich hab ein Integral das ich nicht schaffe zu bestimmen, ich sehe einfach keinen Substitutionsterm der sinnvoll ist:

[mm]\integral {\sin^{5}x* cosx \, dx}[/mm]

Würd mich freuen wenn einer mir den Weg zeigen kann.
Das Aussehen des Integrals tut mir leid, aber ich hab es einfach nicht hinbekommen, das ohne Grenzen auf eine Zeile zu schreiben.

        
Bezug
Substitution(sterm): Substitution
Status: (Antwort) fertig Status 
Datum: 21:45 Mo 14.03.2005
Autor: MathePower

Hallo,

hier bietet sich die Substitution

[mm]\begin{gathered} z\; = \;\sin (x) \hfill \\ dz\; = \cos (x)\;dx \hfill \\ \end{gathered} [/mm]

an.

Dann wird daraus:

[mm]\int {\sin ^{5} (x)\;\cos (x)\;dx\; = \;\int {z^{5} \;dz} } [/mm]

Gruß
MathePower



Bezug
        
Bezug
Substitution(sterm): Ergebnis
Status: (Frage) beantwortet Status 
Datum: 22:02 Mo 14.03.2005
Autor: Smilodon

Als Ergebnis hab ich jetzt

[mm] \bruch{1}{6}*(sinx)^6[/mm]

ist das die Lösung?

Bezug
                
Bezug
Substitution(sterm): Frage: Grenzen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Mo 14.03.2005
Autor: t5ope

Hi,


Welche Grenzen hat denn das Integral ?

Von der Form her passt es allerdings schon zur Stammfunktion.

Bezug
                        
Bezug
Substitution(sterm): Re: Grenzen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Mo 14.03.2005
Autor: Smilodon

Das Integral hat keine Grenzen in der Aufgabe geht es nur um die Substitution.

Bezug
                
Bezug
Substitution(sterm): Ja!
Status: (Antwort) fertig Status 
Datum: 22:56 Mo 14.03.2005
Autor: Marcel

Hallo!

> Als Ergebnis hab ich jetzt
>
> [mm]\bruch{1}{6}*(sinx)^6[/mm]
>  
> ist das die Lösung?

[ok] [daumenhoch]

Zur Kontrolle leiten wir die Funktion [mm] $F(x):=\frac{1}{6}*\sin^6(x)\;\;(=\frac{1}{6}*(\sin(x))^6)$ [/mm] mal mittels der MBKettenregel ab (irgendwie muss ich mir meine Antwort ja auch verdienen ;-)):
Wir setzen [mm] $g(x):=\frac{1}{6}x^6$ [/mm] und [mm] $h(x):=\sin(x)$. [/mm] Dann gilt:
$F(x)=g(h(x))$.
Weiter gilt [mm] $g\,'(x)=x^5$, [/mm] also [mm] $g\,'(h(x))=[h(x)]^5=\sin^5(x)$. [/mm] Ferner ist [mm]h'(x)=\cos(x)[/mm], also erhalten wir nach der Kettenregel:
[mm] $F\,'(x)=g\,'(h(x))*h\,'(x)=\sin^5(x)*\cos(x)$. [/mm]  

Viele Grüße,
Marcel

Bezug
        
Bezug
Substitution(sterm): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Mo 14.03.2005
Autor: Marcel


>  Das Aussehen des Integrals tut mir leid, aber ich hab es
> einfach nicht hinbekommen, das ohne Grenzen auf eine Zeile
> zu schreiben.

Ich habs geändert ;-) (klick mal auf Quelltext bzw. Revisionsgeschichte...)!

Viele Grüße,
Marcel  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de