www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summe div. Folgen = konverg.?
Summe div. Folgen = konverg.? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe div. Folgen = konverg.?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 01.05.2013
Autor: Kartoffelchen

Aufgabe
Lassen sich zwei divergente Folgen finden, sodass die Summe dieser Folgen konvergiert?

Ich habe diese Frage sonst nirgendwo im Internet gestellt.

Man nehme zwei Folgen, die divergent sind:

1.) Die Folge [mm] a_n [/mm] = n
Sie divergiert bestimmt gegen + unendlich

2.) Die Folge [mm] b_n [/mm] = (-n)
Sie divergiert bestimmt gegen - unendlich

->

Die Folge [mm] c_n [/mm] = [mm] a_n [/mm] + [mm] b_n [/mm] = n + (-n) = 0.
Diese Folge konvergiert gegen 0.


Passt das denn? Mir kommt das zu einfach vor, bzw. bin ich mir nicht sicher ob man bei der Nullfolge von Konvergenz sprechen kann, andererseits ist aber auch
[mm] |c_n [/mm] - 0| = | 0 - 0 | = 0 < 'epsilon' für alle 'epsilon' > 0.



        
Bezug
Summe div. Folgen = konverg.?: alles okay
Status: (Antwort) fertig Status 
Datum: 18:10 Mi 01.05.2013
Autor: Loddar

Hallo Kartoffelchen!


Alles okay mit Deiner Folgenwahl. [daumenhoch]


Gruß
Loddar

Bezug
                
Bezug
Summe div. Folgen = konverg.?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Do 02.05.2013
Autor: Kartoffelchen

Hallo,

erstmal vielen Dank für die Antwort!

Ich habe da noch eine "ähnliche" Behauptung:

Es wird behauptet:
[mm] $(a_n [/mm] ), [mm] (b_n [/mm] )$ konvergieren $ [mm] \leftrightarrow (a_n + b_n )$ und $ (a_n - b_n ) $ konvergieren. Diese Behauptung gilt nur, wenn beide Richtungen erfüllt sind. Dabei muss aber sowohl die Summe als auch die Differenz der beiden Folgen konvergieren. Wenn ich beispielsweise wieder das Beispiel $ a_n = n ; b_n = -n$ heranziehe, funktioniert das zwar mit der Summe, aber nicht mit der Differenz. D.h. ich würde nun erst einmal annehmen, dass obige BEhauptung stimmt. Beweis: "=>" Sei $ lim( a_n ) = a ; lim( b_n ) = b $. Dann folgt: $ |a_n - a| < \varepsilon$ $|b_n - b| < \varepsilon$ und $| (a_n + b_n ) - (a + b) | \le |a_n - a| + |b_n - b| < 2\varepsilon $ Analog dazu für die Differenz. Und die andere Richtung sollte sich dann analog dazu ergeben. Stimmt das? [/mm]

Bezug
                        
Bezug
Summe div. Folgen = konverg.?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Do 02.05.2013
Autor: fred97


> Hallo,
>  
> erstmal vielen Dank für die Antwort!
>  
> Ich habe da noch eine "ähnliche" Behauptung:
>  
> Es wird behauptet:
>  [mm](a_n ), (b_n )[/mm] konvergieren [mm]\leftrightarrow (a_n + b_n )[/mm]
> und [mm](a_n - b_n )[/mm] konvergieren.
>  
> Diese Behauptung gilt nur, wenn beide Richtungen erfüllt
> sind.
>  Dabei muss aber sowohl die Summe als auch die Differenz
> der beiden Folgen konvergieren.
> Wenn ich beispielsweise wieder das Beispiel [mm]a_n = n ; b_n = -n[/mm]
> heranziehe, funktioniert das zwar mit der Summe, aber nicht
> mit der Differenz.
>
> D.h. ich würde nun erst einmal annehmen, dass obige
> BEhauptung stimmt.

Ja, das tut sie.


>  
> Beweis:
>  
> "=>"
>  Sei [mm]lim( a_n ) = a ; lim( b_n ) = b [/mm].
>  Dann folgt:
>  [mm]|a_n - a| < \varepsilon[/mm]
>  [mm]|b_n - b| < \varepsilon[/mm]
>  
> und
>  
> [mm]| (a_n + b_n ) - (a + b) | \le |a_n - a| + |b_n - b| < 2\varepsilon[/mm]


Das ist doch kein Beweis ! Schreib ihn sauber auf. Zeige: zu [mm] \varepsilon [/mm] > 0 gibt es ein [mm] n_0 [/mm] mit:

[mm]| (a_n + b_n ) - (a + b) | \le |a_n - a| + |b_n - b| < 2\varepsilon[/mm]   für n > [mm] n_0. [/mm]


>  
> Analog dazu für die Differenz.
>  Und die andere Richtung sollte sich dann analog dazu
> ergeben.

mach mal vor.

FRED

>  
>
> Stimmt das?
>  
>
>  


Bezug
                                
Bezug
Summe div. Folgen = konverg.?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Do 02.05.2013
Autor: Kartoffelchen

Okay, los gehts:

Sei [mm] $\varepsilon [/mm] > 0 $ vorgegeben, dann ist auch $ [mm] \varepsilon/2 [/mm] > 0 $.
Da [mm] $a_n [/mm] $ und [mm] $b_n [/mm] $ konvergieren, existieren [mm] $N_1 [/mm] $ und [mm] $N_2 [/mm] $ mit
[mm] |a_n [/mm] - a| < [mm] \varepsilon/2 [/mm] für alle $n [mm] \ge N_1 [/mm] $ und [mm] |b_n [/mm] - b| < [mm] \varepsilon/2 [/mm] für alle $n [mm] \ge N_2 [/mm] $.

Dann folgt für alle $n [mm] \ge [/mm] N := [mm] max(N_1 [/mm] , [mm] N_2) [/mm] $:
[mm] $|(a_n [/mm] + [mm] b_n [/mm] ) - (a+b) | [mm] \le |a_n [/mm] - a| + [mm] |b_n [/mm] - b| < [mm] \varepsilon/2 [/mm] + [mm] \varepsilon/2 [/mm] = [mm] \varepsilon. [/mm]

Erstmal zu dem Teil.

Bezug
                                        
Bezug
Summe div. Folgen = konverg.?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Do 02.05.2013
Autor: fred97


> Okay, los gehts:
>  
> Sei [mm]\varepsilon > 0[/mm] vorgegeben, dann ist auch [mm]\varepsilon/2 > 0 [/mm].
>  
> Da [mm]a_n[/mm] und [mm]b_n[/mm] konvergieren, existieren [mm]N_1[/mm] und [mm]N_2[/mm] mit
>  [mm]|a_n[/mm] - a| < [mm]\varepsilon/2[/mm] für alle [mm]n \ge N_1[/mm] und [mm]|b_n[/mm] -
> b| < [mm]\varepsilon/2[/mm] für alle [mm]n \ge N_2 [/mm].
>  
> Dann folgt für alle [mm]n \ge N := max(N_1 , N_2) [/mm]:
>  [mm]$|(a_n[/mm] +
> [mm]b_n[/mm] ) - (a+b) | [mm]\le |a_n[/mm] - a| + [mm]|b_n[/mm] - b| < [mm]\varepsilon/2[/mm] +
> [mm]\varepsilon/2[/mm] = [mm]\varepsilon.[/mm]

So ist es sauber.

FRED

>  
> Erstmal zu dem Teil.


Bezug
                                                
Bezug
Summe div. Folgen = konverg.?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Fr 03.05.2013
Autor: Kartoffelchen

Hallo; das freut mich!

Für die Differenz, die ja nun auch noch gezeigt werden muss, habe ich folgendes überlegt:

Es ist [mm] $-b_n [/mm] = [mm] (-1)b_n [/mm] $
und $ lim(- [mm] b_n) [/mm] = -1 [mm] lim(b_n [/mm] )$

Analog zu dem zuvor gezeigten Beweis für die Summe:

Da $ [mm] a_n [/mm] $ und $ [mm] b_n [/mm] $ konvergieren, existieren $ [mm] N_1 [/mm] $ und
$ [mm] N_2 [/mm] $ mit [mm] $|a_n [/mm]  - a| <  [mm] \varepsilon/2 [/mm] $ für alle $ n [mm] \ge N_1 [/mm] $ und $ [mm] |(-1)b_n [/mm] $ +  b| < $ [mm] \varepsilon/2 [/mm] $ für alle $ n [mm] \ge N_2 [/mm] $.  
Dann folgt für alle $ n [mm] \ge [/mm] N := [mm] max(N_1 [/mm] , [mm] N_2) [/mm] $:
[mm] $|(a_n [/mm]  +  [mm] (-1)b_n [/mm]  ) - (a-b) |  [mm] \le |a_n [/mm]  - a| +  [mm] |(-1)b_n [/mm]  + b| < [mm] \varepsilon/2 [/mm]  +
[mm] \varepsilon/2 [/mm]  =  [mm] \varepsilon. [/mm]
_ _ _ _

Sollte dieser Beweis auch in Ordnung sein (zumindest stimmt die Behauptung ja, wie ich von dir inzwischen weiß), dann habe ich somit die erste Richtung gezeigt.

Es fehlt nun noch die Umkehrung:

" [mm] $(a_n [/mm] + [mm] b_n [/mm] )$ und [mm] $(a_n [/mm] - [mm] b_n [/mm] )$ konvergieren $ [mm] \rightarrow a_n [/mm] $ und [mm] $b_n [/mm] $ konvergieren "

Diese Behauptung hätte ich ja, wie in einem vorherigen Beitrag geäußert, aus dem ersten Beweis geschlossen, scheint aber doch nicht ganz so simpel zu sein wie angenommen, da ich ja sowohl die Summe als auch die Differenz mit einbeziehen muss.

Daher: Wie gehe ich hier vor?

Bezug
                                                        
Bezug
Summe div. Folgen = konverg.?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Fr 03.05.2013
Autor: Gonozal_IX

Hiho,

> Sollte dieser Beweis auch in Ordnung sein (zumindest stimmt die Behauptung ja, wie ich von dir inzwischen weiß), dann habe ich somit die erste Richtung gezeigt.

> Es fehlt nun noch die Umkehrung:

Das tolle an dem Satz ist: Man kann die Rückrichtung jetzt mit der Hinrichtung beweisen :-)

Du hast ja bereits gezeigt: Wenn [mm] a_n [/mm] und [mm] b_n [/mm] konvergieren, so auch [mm] $a_n [/mm] + [mm] b_n$ [/mm] und [mm] $a_n [/mm] - [mm] b_n$ [/mm]

Für die Rückrichtung setze [mm] $c_n [/mm] = [mm] a_n [/mm] + [mm] b_n, d_n [/mm] = [mm] a_n [/mm] - [mm] b_n$ [/mm] und betrachte [mm] $c_n [/mm] + [mm] d_n$ [/mm] bzw [mm] $c_n [/mm] - [mm] d_n$. [/mm]

Gruß,
Gono.

Bezug
                                                                
Bezug
Summe div. Folgen = konverg.?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Fr 03.05.2013
Autor: Kartoffelchen

Hallo,

das ist super, vielen Dank!

Ich hatte nur Zweifel, ob dies 'so einfach' möglich ist, da es ja darum geht, dass die Konvergenz sowohl der Summe als auch der Differenz der beiden Folgen als Voraussetzung gelten. Mit deinem Hinweis klappts natürlich :D

Also danke an alle Hilfeleistenden,

schönes Wochenende!



Bezug
                                                                
Bezug
Summe div. Folgen = konverg.?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Fr 03.05.2013
Autor: Marcel

Hi Gono,

> Hiho,
>  
> > Sollte dieser Beweis auch in Ordnung sein (zumindest stimmt
> die Behauptung ja, wie ich von dir inzwischen weiß), dann
> habe ich somit die erste Richtung gezeigt.
>  
> > Es fehlt nun noch die Umkehrung:
>  
> Das tolle an dem Satz ist: Man kann die Rückrichtung jetzt
> mit der Hinrichtung beweisen :-)

Oo: []brutale Mathematik

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de