www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Summe einer Reihe
Summe einer Reihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Fr 03.12.2004
Autor: Shaguar

Moin

ich soll die Summe der folgenden Reihe ausrechnen:

[mm] \summe_{n=1}^{\infty} \bruch{1}{4n^{2}-1} [/mm]

So jetzt hab ich logischerweise die []Partialbruchzerlegung  probiert und bin dabei hängengeblieben:

[m]\bruch{1}{4n^{2}-1}=\bruch{A}{4}+\bruch{B}{n^{2}-1}[/m] [mm] *4n^{2}-1 [/mm]
[m]1=A(n^{2}-1)+4B[/m]
[m]1=An^2-A+4B[/m]

So habe mehrere Möglichkeiten für die Partialbruchzerlgung gefunden.
a) die Nenner der Summe geben als Produkt den Nenner des Ausgangsbruches
b) den Nenner wegkürzen lassen, so wie ich es hier gezeigt habe
bei beiden folgt irgendwann der Koeffizientenvergleich

Ich habe mich für b) entschieden, weil ich dachte, dass es leichter geht.
Ich hoffe ich habe es bis hierhin richtig gemacht.


Vielen Dank für ein wenig Hilfe

Shaguar



        
Bezug
Summe einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Fr 03.12.2004
Autor: Paulus

Lieber shaguar

was ist die Summe einer Reihe??

Schau bitte die Definition von "Reihe" nochmals nach!

Die Idee mit der Partialbruchzerlegung ist sicher eine gute Idee, nur:

Der Nenner lautet ja [mm] $4n^2-1$, [/mm] und das ist doch $(2n+1)(2n-1)_$

Der Ansatz müsste also lauten:

[mm] $\bruch{1}{4n^2-1}=\bruch{A}{2n+1}+\bruch{B}{2n-1}$ [/mm]

Das entstehende Gleichungssystem sollte eindeutig aufzulösen sein und die Werte

[mm] $A=-\bruch{1}{2}$ [/mm] und
[mm] $B=+\bruch{1}{2}$ [/mm]

liefern.

Kommst du jetzt weiter?

Mit lieben Grüssen

Paul

Bezug
                
Bezug
Summe einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 Sa 04.12.2004
Autor: Shaguar

Moin,

"...,den Grenzwert S nennt man Summe der Reihen..."(Wikipedia). Naja hätte ich die Binomische Formel gesehn wär ich bestimmt auch drauf gekommen. Habe mehrere ziemlich blöde Faktoren gebildet aber auf die B-Formel bin ich einfach net gekommen. Ich hab zwar arge Probleme mit Reihen werde aber dieser Teleskopreihe bestimmt irgendwie hinkriegen. Schreibe nachher mal meine Ergebnisse hier rein.

Danke für die Hilfe!

Gruß Shaguar

Bezug
                
Bezug
Summe einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Sa 04.12.2004
Autor: Shaguar

Moin,
der Rest war ja noch einfacher als gedacht. Ich schreibe mal auf, wie ich es jetzt aufschreiben würde.

[m] \summe_{n=1}^{\infty} \bruch{1}{4n^{2}-1} = \summe_{n=1}^{\infty} \bruch{1}{4n-2}-\bruch{1}{4n+2}[/m]

Also ist die Summe [m]S= \limes_{n\rightarrow\infty} \summe_{n=1}^{\infty} \bruch{1}{4n-2}-\bruch{1}{4n+2}= \bruch{1}{2}[/m]

Sobald ich weiß kann man als Begründung nun folgendes schreiben:

Wenn man die Summe ausschreibt,

[m]\bruch{1}{2}\underbrace{-\bruch{1}{6}+\bruch{1}{6}}_{=0}\underbrace{-\bruch{1}{10}+\bruch{1}{10}}_{=0}-\bruch{1}{14}...[/m]

sieht man, dass sich immer 2 Brüche zu 0 addieren und man nur noch einen kleineren von [mm] \bruch{1}{2} [/mm] abziehen muss. Bei der Grenzwertbildung ist dieser Bruch bei [mm] n=\infty [/mm] gleich 0 und somit der Grenzwert dieser Reihe [mm] \bruch{1}{2}. [/mm]

So habe das jetzt denke/hoffe ich mal verstanden. Kann man dies als Begründung so schreiben?
Kann man es mathematischer ausdrücken?

Gruß Shaguar

Bezug
                        
Bezug
Summe einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Sa 04.12.2004
Autor: Paulus

Hallo Shaguar

ach ja, das mit der Summe war etwas dumm von mir. Na ja, meine Antwort hat die offenbar trotzdem geholfen, was mich freut! :-)

Etwas mathematischer? Ist wahrscheinlich nicht nötig. Vielleicht könnte man das ja so machen:

Du hast ja eigentlich den Limes für n gegen Unendlich zu bestimmen von:

[mm] $\sum_{k=1}^n{\left(\bruch{1}{4k-2}+\bruch{1}{4k+2}\right)}$ [/mm]

Von dieser Summe kann der erste Summand und der letzte abgespalten werden, und das dazwischen ist  ja, gemäss deiner eigenen Ueberlegung, immer Null:

[mm] $\sum_{k=1}^n{\left(\bruch{1}{4k-2}+\bruch{1}{4k+2}\right)}=\bruch{1}{2}-\bruch{1}{4n+2}$ [/mm]

Davon den Grenzübertritt zu machen, ist nicht mehr allzuschwierig.

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de