www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Summe v. Quadraten: -1 Quadrat
Summe v. Quadraten: -1 Quadrat < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe v. Quadraten: -1 Quadrat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:55 Sa 22.12.2012
Autor: icarus89

Aufgabe
[mm] a_{n}:=4 n^{2} +1 [/mm]
Zeigen Sie, dass -1 ein Quadrat modulo jedem Primteiler von [mm] a_{n} [/mm] ist.

Hallo!

Wir hatten da so einen Satz darüber, wann eine Zahl Summe von Quadraten ist, nämlich genau dann, wenn jeder ungerader Primteiler, der ungerade oft auftritt kongruent zu 1 mod 4 ist. Nun hab ich mir gedacht, dass ich einfach zeige, dass es nur solche Primteiler gibt, also ausschließe, dass 2 ein Primteiler ist (was sowieso klar ist) und dass jeder Primteiler ungerade oft auftritt. Aber leider scheint dies nicht einmal zu stimmen. Hab mir mit einem Computeralgebrasystem die ersten 200 Beispiele angeguckt. Die meisten der [mm] a_{n} [/mm] sind sogar quadratfrei, aber ab und zu tritt ein Primfaktor auch doppelt auf. Also muss man wohl irgendwie anders zeigen, dass jeder Primfaktor kongruenz zu 1 mod 4 ist (und damit -1 Quadrat). Aber ich weiß nicht, wie ich das zeigen sollte, wenn ich
[mm] a_{n} [/mm] = a p schreibe und modulo 4 reduziere, weiß ich nur, dass a und p invertierbar sind, also kongruent zu 1 oder 3 mod 4, was ich vorher auch schon gewusst habe...

        
Bezug
Summe v. Quadraten: -1 Quadrat: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Sa 22.12.2012
Autor: felixf

Moin!

> [mm]a_{n}:=4 n^{2} +1[/mm]
>  Zeigen Sie, dass -1 ein Quadrat modulo
> jedem Primteiler von [mm]a_{n}[/mm] ist.
>  
> Wir hatten da so einen Satz darüber, wann eine Zahl Summe
> von Quadraten ist, nämlich genau dann, wenn jeder
> ungerader Primteiler, der ungerade oft auftritt kongruent
> zu 1 mod 4 ist. Nun hab ich mir gedacht, dass ich einfach
> zeige, dass es nur solche Primteiler gibt, also

Du machst es dir hier viel zu kompliziert.

-1 ist schon ein Quadrat modulo [mm] $a_n$ [/mm] selber, und du kannst dies explizit hinschreiben, d.h. ein Element [mm] $b_n \in \IZ$ [/mm] angeben mit [mm] $b_n^2 \equiv [/mm] -1 [mm] \pmod{a_n}$. [/mm]

Daraus folgt auch, dass -1 ein Quadrat modulo jedem Teiler von [mm] $a_n$ [/mm] ist, und somit auch modulo eines jeden Primteilers.

> ausschließe, dass 2 ein Primteiler ist (was sowieso klar
> ist) und dass jeder Primteiler ungerade oft auftritt. Aber
> leider scheint dies nicht einmal zu stimmen. Hab mir mit
> einem Computeralgebrasystem die ersten 200 Beispiele
> angeguckt. Die meisten der [mm]a_{n}[/mm] sind sogar quadratfrei,
> aber ab und zu tritt ein Primfaktor auch doppelt auf. Also
> muss man wohl irgendwie anders zeigen, dass jeder
> Primfaktor kongruenz zu 1 mod 4 ist (und damit -1 Quadrat).
> Aber ich weiß nicht, wie ich das zeigen sollte, wenn ich
>  [mm]a_{n}[/mm] = a p schreibe und modulo 4 reduziere, weiß ich
> nur, dass a und p invertierbar sind, also kongruent zu 1
> oder 3 mod 4, was ich vorher auch schon gewusst habe...

Du bekommst das heraus, wenn du direkt zeigst, dass -1 ein Quadrat modulo jedem Primteilers ist, etwa wie oben beschrieben :-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de