www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summe vereinfachen
Summe vereinfachen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Mo 24.09.2007
Autor: Tauphi

Hallo,

ich habe eine wahrscheinlich etwas blöde Frage, aber ich komme bei der Auflösung einer Summe nicht richtig weiter ... Und zwar kann man, wenn man Summen ausrechnen will, die Apperate so umstellen, dass das alles recht einfach geht...

Zb bei der Addition...
[mm] \summe_{x=1}^{666}(5+x) [/mm]

Kann ich schreiben...
[mm] \summe_{x=1}^{666}(5)+\summe_{x=1}^{666}(x)=5*666 [/mm] + [mm] \bruch{666*667}{2} [/mm]

Genauso bei der Multiplikation...
[mm] \summe_{x=1}^{666}(5*x) [/mm]

Kann ich schreiben...
[mm] 5*\summe_{x=1}^{666}(x)=5*\bruch{666*667}{2} [/mm]

Das gleiche funzt auch bei der Subtraktion ...
Aber hier jetzt mein Problem, wie mache ich das bei einer Division? O.o

Ich krieg im folgenden die 5 nicht aus der Summe heraus, ohne ein falsches Ergebnis zu bekommen:

[mm] \summe_{x=1}^{666}(\bruch{5}{x}) [/mm]

Gibt es dafür irgendwie eine besondere Regel ? Eine kurze Abhilfe wäre super :)

Danke im voraus

Viele Grüße
Andi

        
Bezug
Summe vereinfachen: ausklammern
Status: (Antwort) fertig Status 
Datum: 21:35 Mo 24.09.2007
Autor: Loddar

Hallo Andi!


Es gilt ja [mm] $\bruch{5}{x} [/mm] \ = \ [mm] 5*\bruch{1}{x}$ [/mm] . Damit kannst Du die Reihe wie folgt umformen:

[mm] $$\summe_{x=1}^{666}\bruch{5}{x} [/mm] \ = \ [mm] 5*\summe_{x=1}^{666}\bruch{1}{x}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Summe vereinfachen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:46 Mo 24.09.2007
Autor: Tauphi

Hallo Loddar,

danke für die Antwort. Das mit dem Ausklammern klingt schon mal gut ... Allerdings weiss ich nun nicht, wie ich dann folgende Summe ausrechne:

[mm] \summe_{x=1}^{666}\bruch{1}{x} [/mm]

Gibt es dafür auch eine bestimmte Formel ähnlich wie die gaußsche Summenformel [mm] \bruch{n*(n+1)}{2} [/mm] ? Falls ja, gibt es darüberhinaus noch mehr und unter welchem Stichpunkt kann ich die alle nachlesen ? Ich kenn nur diese eine, leider ...

Viele Grüße
Andi

Bezug
                        
Bezug
Summe vereinfachen: Näherungsformel
Status: (Antwort) fertig Status 
Datum: 21:53 Mo 24.09.2007
Autor: Loddar

Hallo Andi!


Die (unendliche) Reihe [mm] $\summe_{k=1}^{\infty}\bruch{1}{k}$ [/mm] ist bekannt als "harmonische Reihe".
Für endliche Summenendwerte habe ich folgende []Näherungsformel gefunden:

$$S(n) \ = \ [mm] \summe_{k=1}^{n}\bruch{1}{k} [/mm] \ [mm] \approx [/mm] \ [mm] \ln(n)+\gamma [/mm] \ = \ [mm] \ln(n)+0.5772...$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de