www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebraische Geometrie" - Summe von Radikalidealen
Summe von Radikalidealen < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Radikalidealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 So 14.10.2012
Autor: Teufel

Hi!

Ich soll ein Beispiel für 2 Radikalideale ($I = [mm] \sqrt{I}$) [/mm] finden, deren Summe kein Radikalideal ist. Ich habe leider keine Ahnung, wo ich anfangen soll zu suchen. Ich habe mal angefangen in [mm] \IZ [/mm] zu suchen und gemerkt, dass da alle Primideale Radikalideale sind. Wegen [mm] a\IZ+b\IZ=ggt(a,b)\IZ [/mm] wollte ich also 2 Zahlen a und b so suchen, dass ggt(a,b) nicht prim ist, aber [mm] a\IZ [/mm] und [mm] b\IZ [/mm] Radikalideale sind. Ich wollte z.B. einen ggt von 4 haben, da [mm] 4\IZ [/mm] kein Radikalideal ist. Aber ich habe bis jetzt noch keine Zahlen a,b gefunden, sodass [mm] a\IZ [/mm] und [mm] b\IZ [/mm] Radikalideale wären. Kann es sein, dass [mm] a\IZ [/mm] genau dann ein Radikalideal ist, falls a prim ist? Dann könnte ich ja direkt aufhören in [mm] \IZ [/mm] zu suchen.

Hat jemand dann noch einen anderen Suchort parat?

        
Bezug
Summe von Radikalidealen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 So 14.10.2012
Autor: felixf

Moin!

> Ich soll ein Beispiel für 2 Radikalideale ([mm]I = \sqrt{I}[/mm])
> finden, deren Summe kein Radikalideal ist. Ich habe leider
> keine Ahnung, wo ich anfangen soll zu suchen. Ich habe mal
> angefangen in [mm]\IZ[/mm] zu suchen und gemerkt, dass da alle
> Primideale Radikalideale sind. Wegen [mm]a\IZ+b\IZ=ggt(a,b)\IZ[/mm]
> wollte ich also 2 Zahlen a und b so suchen, dass ggt(a,b)
> nicht prim ist, aber [mm]a\IZ[/mm] und [mm]b\IZ[/mm] Radikalideale sind. Ich
> wollte z.B. einen ggt von 4 haben, da [mm]4\IZ[/mm] kein
> Radikalideal ist. Aber ich habe bis jetzt noch keine Zahlen
> a,b gefunden, sodass [mm]a\IZ[/mm] und [mm]b\IZ[/mm] Radikalideale wären.
> Kann es sein, dass [mm]a\IZ[/mm] genau dann ein Radikalideal ist,
> falls a prim ist?

Nein; in Hauptidealbereichen -- also auch in [mm] $\IZ$ [/mm] -- ist ein Ideal $(a)$ genau dann radikal, wenn $a$ quadratfrei ist.

Das wiederum zeigt aber auch, dass du in Hauptidealbereichen nicht weiter suchen brauchst: dort gilt immer $(a) + (b) = (ggT(a, b))$, womit die Summe von Radikalidealen immer ein Radikalideal ist.

(In faktoriellen Ringen sind Hauptideale uebrigens auch genau dann radikal, wenn ihr Erzeuger quadratfrei ist.)

> Hat jemand dann noch einen anderen Suchort parat?

In $K[x, y]$ kannst du Gegenbeispiele finden. Du kannst zwei passende Hauptideale addieren, so dass ein nicht-Radikalideal wie [mm] $(x^2, [/mm] y)$ herauskommt.

LG Felix


Bezug
                
Bezug
Summe von Radikalidealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 So 14.10.2012
Autor: Teufel

Hi!

Danke für die Hinweise! Ich suche jetzt dort auch schon eine Weile, aber ich finde einfach nichts. Es wäre natürlich [mm] (x^2)+(y)=(x^2,y), [/mm] aber [mm] (x^2) [/mm] ist ja kein Radikalideal. Und ich weiß nicht, wie ich sonst auf z.B. [mm] (x^2,y) [/mm] kommen soll.

Ich werde wohl noch ein bisschen rumprobieren. Ich mag diese Beispiel-find-Aufgaben irgendwie nicht.

Bezug
                        
Bezug
Summe von Radikalidealen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 So 14.10.2012
Autor: felixf

Moin!

> Danke für die Hinweise! Ich suche jetzt dort auch schon
> eine Weile, aber ich finde einfach nichts. Es wäre
> natürlich [mm](x^2)+(y)=(x^2,y),[/mm] aber [mm](x^2)[/mm] ist ja kein
> Radikalideal. Und ich weiß nicht, wie ich sonst auf z.B.
> [mm](x^2,y)[/mm] kommen soll.

Anstelle [mm] $(x^2)$ [/mm] kannst du ja das Ideal anschauen, welches von [mm] $x^2 [/mm] + f(y)$ erzeugt wird fuer irgendein $f(y) [mm] \in [/mm] (y)$. Wenn du $f$ passend waehlst, ist [mm] $(x^2 [/mm] + f(y))$ prim.

LG Felix


Bezug
                                
Bezug
Summe von Radikalidealen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 So 14.10.2012
Autor: Teufel

Ah, ich hatte wohl Tomaten auf den Augen. Nun sehe ich es, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de