www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Summe zweier Quadrate bestimme
Summe zweier Quadrate bestimme < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe zweier Quadrate bestimme: Aufgabe/Idee
Status: (Frage) beantwortet Status 
Datum: 15:55 So 21.08.2011
Autor: can19

Aufgabe
Erläutern sein ein allgemeingültiges Verfahren, mit dem eine solche Darstellung von 233 als Summe zweier Quadrate [mm] x^{2}+y^{2} [/mm] ermittelt werden kann, und ermitteln sie damit eine solche Darstellung.
Hinweis: [mm] 89^{2}\equiv [/mm] -1 mod 233


Hallo

ich habe diese Aufgabe in einer Klausur gefunden.
Ich weiß leider kein Verfahren außer Ausprobieren.

Dass 233 als Summe zweier Quadrate darstellbar ist folgt aus der Bedingung:
[mm] 233\not\equiv [/mm] 3 mod 4

Ich habe raus 233= 8² + 13²

aber wie kommt man schneller auf die Lösung?
und was hilft mir der Hinweis?

lg

        
Bezug
Summe zweier Quadrate bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 So 21.08.2011
Autor: hippias

Es irritiert mich das "eine solche Darstellung" in der Problemstellung. Was ist mit solche gemeint? Einfach die Darstellung als Summe zweier Quadratzahlen?

Auf die Schnelle haette ich folgende Idee fuer eine Verfahren: Es geht zwar nicht ohne Durchprobieren, aber wenigstens kann ich den Hinweis gebrauchen.
Wenn [mm] x^{2}+ y^{2}= [/mm] 233, so ist [mm] y^{2}= -x^{2} [/mm] mod 233 und aus [mm] 233\not\vert [/mm] x folgt [mm] (yx^{-1})^{2}= [/mm] -1 mod 233. Da 233 eine Primzahl ist -hoffe ich - besitzt die Gleichung [mm] t^{2}= [/mm] -1 nur die Loesungen 89 und -89 mod 233 (siehe Hinweis). Folglich muss y= 89x oder y= -89 x mod 233 gelten.
Damit braucht man nur noch fuer x die Zahlen von 1...233 durchprobieren, waehrend y sich wie oben ergibt (der Fall y= -89x mod 233 ist dann in y= 89x mod 233 enthalten).

Sonst faellt mir noch ein Satz ein, der besagt, wenn sich n und p als Summe von zwei Quadratzahlen darstellen lassen und wenn n= kp ist, dann laesst sich auch k als Summe zweier Quadratzahlen darstellen und diese Darstellung laesst sich einfach aus denen von n und p berechnen.
D.h. [mm] 89^{2}+ 1^{2}= [/mm] 34*233, wobei 34= 2*17. Nun ist 2= [mm] 1^{2}+ 1^{2} [/mm] und 17= [mm] 4^{2}+ 1^{2}, [/mm] sodass sich eine Darstellung von 233 im Prinzip leicht errechnen liesse, wenn mir der Satz im Detail erinnerlich waere.    

Bezug
                
Bezug
Summe zweier Quadrate bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 So 21.08.2011
Autor: felixf

Moin!

> Es irritiert mich das "eine solche Darstellung" in der
> Problemstellung. Was ist mit solche gemeint? Einfach die
> Darstellung als Summe zweier Quadratzahlen?

Ich denke das ist gemeint.

> Auf die Schnelle haette ich folgende Idee fuer eine
> Verfahren: Es geht zwar nicht ohne Durchprobieren, aber
> wenigstens kann ich den Hinweis gebrauchen.
>  Wenn [mm]x^{2}+ y^{2}=[/mm] 233, so ist [mm]y^{2}= -x^{2}[/mm] mod 233 und
> aus [mm]233\not\vert[/mm] x folgt [mm](yx^{-1})^{2}=[/mm] -1 mod 233. Da 233
> eine Primzahl ist -hoffe ich - besitzt die Gleichung [mm]t^{2}=[/mm]
> -1 nur die Loesungen 89 und -89 mod 233 (siehe Hinweis).
> Folglich muss y= 89x oder y= -89 x mod 233 gelten.
>  Damit braucht man nur noch fuer x die Zahlen von 1...233
> durchprobieren, waehrend y sich wie oben ergibt (der Fall
> y= -89x mod 233 ist dann in y= 89x mod 233 enthalten).

Man muss eigentlich viel weniger probieren: aus [mm] $x^2 [/mm] + [mm] y^2 [/mm] = 233$ und $x, y [mm] \ge [/mm] 0$ folgt $x [mm] \le \lfloor\sqrt{233}\rfloor [/mm] = 15$. Du musst also nur $x = 0, [mm] \dots, [/mm] 15$ durchprobieren, und fuer jede Wahl von $x$ schauen, ob [mm] $\srqt{233 - x^2}$ [/mm] eine ganze Zahl ist. (Und $x = 0$ kann man weglassen, da 233 kein Quadrat ist.)

LG Felix


Bezug
                        
Bezug
Summe zweier Quadrate bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 So 21.08.2011
Autor: hippias


> jede Wahl von [mm]x[/mm] schauen, ob [mm]\srqt{233 - x^2}[/mm] eine ganze
> Zahl ist. (Und [mm]x = 0[/mm] kann man weglassen, da 233 kein

Ich nehme an Du meintest "eine Quadratzahl". Da uebrigens eine der beiden Zahlen =0 mod 4 ist, bleiben sogar nur die Moeglichkeiten x= 4,8,12 uebrig.Da ferner 233=-1 mod 3 und -1 kein Quadrat mod 3 ist, scheidet auch 12 aus.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de