www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summendarstellung
Summendarstellung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summendarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 So 06.01.2008
Autor: Kaesebrot

Aufgabe
Stellen Sie folgende Summen mit Hilfe des Summenzeichens dar und berechnen Sie die Summe von i), ii) und iii)

i) [mm] (x^{2}+3)+(x^{2}+7)+(x^{2}+11)+...+(x^{2}+8023) [/mm]
ii) [mm] x^{6}-x^{9}+x^{12}-...+x^{300} [/mm]
iii) [mm] \bruch{1}{81}x-\bruch{1}{27}x^{2}+\bruch{1}{9}x^{3}-...-243x^{10} [/mm]
iv) 4*6+5*7+6*8+...+2005*2007

Hi zusammen,

bin hier auf eine Aufgabe gestoßen, mit der ich noch Probleme hab. Wäre nett wenn mal jemand drüberschaun könnte =)
Ich denke mal die Summendarstellung stimmt überall, nur wie berechne ich die Summe von ii) un iii)??

Hier mal meine bisherigen Lösungen:

i) [mm] x^{2}*(4+8+12+...+8024) [/mm]
Anzahl der Summanden n=2006
also: [mm] x^{2}*\summe_{m=1}^{2006}4n [/mm]
Mit der Formel [mm] s(n)=\bruch{n+1-m}{2}*(a(n)+(a(m)) [/mm] hab ich dann als Summe 8052084 raus. Müsste stimmen oder?

ii) Anzahl der Summanden n=99
also: [mm] \summe_{m=1}^{99}x^{6}*(-x^{3n-3}) [/mm]
Als Summe hab ich dann: [mm] x^{6}*\bruch{1+x^{297}}{1+x^{3}} [/mm]
stimmt das so?

iii) Anzahl der Summanden n=10
also: [mm] \summe_{m=1}^{10}\bruch{1}{81}x*(-3x)^{n-1} [/mm]
und als Summe hätte ich dann: [mm] \bruch{1}{81}x* \bruch{1-3x^{10}}{1+3x} [/mm] ???

iv) [mm] \summe_{m=4}^{2005}k*(k+2) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Summendarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 So 06.01.2008
Autor: zahllos

Hallo Kaesebrot,

diese Folgen lassen sich alle mit Hilfe der Sumenformel für die arithmetische oder die geometrische Reihe berechnen.

Als Summenformeln habe ich gekriegt:


i) [mm] \sum_{k=0}^{2005} (x^2+3+4k) [/mm]  

ii) [mm] \sum_{k=0}^{98} (-1)^k x^{6+3k} [/mm]

ii) [mm] \frac{-1}{243} \sum_{k=1}^{10} (-1)^k (3x)^k [/mm]

iv) [mm] \sum_{k=5}^{2006} [/mm] (k-1)(k+1)



Bezug
                
Bezug
Summendarstellung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:17 Mo 07.01.2008
Autor: Kaesebrot

ok, vielen Dank für die schnelle Antwort.

Aber meine Summendarstellung müsste doch auch stimmen, oder?
zumindest bekomme ich damit mal die gleichen Summanden raus :D

Bezug
                        
Bezug
Summendarstellung: Aufgabe (i)
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 07.01.2008
Autor: Loddar

Hallo Käsebrot!


Diese Aufgabe hast Du leider nicht richtig gelöst. Hier mal die entsprechende Umformung:

[mm] $$(x^{2}+3)+(x^{2}+7)+(x^{2}+11)+...+(x^{2}+8023)$$ [/mm]
$$= \ [mm] \summe_{k=1}^{2006}\left[x^2+3+(k-1)*4\right]$$ [/mm]
$$= \ [mm] \summe_{k=1}^{2006}\left(x^2+3\right)+\summe_{k=1}^{2006}4*(k-1)$$ [/mm]
$$= \ [mm] \summe_{k=1}^{2006}\left(x^2+3\right)+4*\summe_{k=1}^{2006}(k-1)$$ [/mm]
$$= \ [mm] \green{\summe_{k=1}^{2006}\left(x^2+3\right)}+4*\red{\summe_{k=1}^{2006}k}-4*\blue{\summe_{k=1}^{2006}1}$$ [/mm]
$$= \ [mm] \green{2006*\left(x^2+3\right)}+4*\red{\bruch{2006*(2006+1)}{2}}-4*\blue{2006*1}$$ [/mm]
$$= \ [mm] 2006*x^2+6018+8052084-8024$$ [/mm]

Gruß
Loddar


Bezug
                        
Bezug
Summendarstellung: Aufgabe (iv)
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 07.01.2008
Autor: Loddar

Hallo Käsebrot!


Aufgabe (iv) hast Du richtig gelöst.


Gruß
Loddar


Bezug
                        
Bezug
Summendarstellung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Mi 09.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de