www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Summenformel
Summenformel < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenformel: Erklärung
Status: (Frage) beantwortet Status 
Datum: 13:50 Di 14.11.2006
Autor: MontBlanc

Hallo,

also meine Mathelehrerin hat mir heute als Vorbereitung auf die Aufgaben der nächsten Runde der Matheolympiade den Hinweis gegeben mich doch mal über die Summenformel zu informieren und mir das anzuschauen. Dazu hat sie mir folgendes gesagt:
[mm] \summe_{K=1}^{n}K=\bruch{n*(n+2)}{2} [/mm]

dies soll die Summe der zahlen von 1 bis n sein. Kann mir das jemand vll an einem beispiel erklären.

Also explizit soll man die Summe von k aufeinanderfolgenden Zahlan abstrakt, also mit  Symbolen darstellen. Heißt das das gleich wie dort oben steht ?

Wäre super wenn mir das jemand erklären würde. Vielen dank

Bis denne


        
Bezug
Summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 14.11.2006
Autor: M.Rex

Hallo

Es gilt:

[mm] \summe_{k=1}^{n}{k}=1+2+3+\cdots+(n-1)+n [/mm]

Also

[mm] \summe_{k=1}^{5}k=1+2+3+4+5=15(=\bruch{5*(5+1)}{2}) [/mm]

Du hast übrigens noch einen Tippfehler in der Formel:
Es gilt

[mm] \summe_{K=1}^{n}K=\bruch{n\cdot{}(n+\red{1})}{2} [/mm]

Den Beweis dazu findest du []hier

Marius

Bezug
                
Bezug
Summenformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Di 14.11.2006
Autor: MontBlanc

Hi,

ok vielen dank. Jetzt nur noch eine Sache =) Sie hat mir weiterhin gesagt ich solle mich mit primzahlen nochmals beschäftigen (sie hat mir ein blatt mit tipps gegeben)... Kann man denn die Summe von n aufeinanderfolgenden Primzahlen auch so darstellen ?

Und was genau hast das k=1 unten zu bedeuten ?


Bis denn

Bezug
                        
Bezug
Summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Di 14.11.2006
Autor: Brinki

Das große griechische Sigma steht für eine Summe. Das K unter dem Summenzeichen ist der Laufindex. Er geht in deinem Fall von 1 bis n. Die Summe besteht aus Summanden der Form K.
Die einzelnen Summanden werden nacheinander "abgearbeitet". Beim ersten Summanden wird für K die 1 eingesetzt beim zweiten die 2 usw. bis man schließlich zum letzten Wert n gelangt. Ausführlich geschrieben ergibt dies
$1+2+3+...+n$

Eine Summenformel für Primzahlen gibt es nicht. Reihenfolge der Primzahlen ist ungeordnet, ihre Bestimmung daher nicht einfach. Jedes Jahr gibt es neue Rekorde bei der Bestimmung der größten Primzahlen.

Übrigens ist [mm] $n^2=\summe_{i=1}^{n}(2n-1)$ [/mm] , was bedeutet, dass die n-te Quadratzahl sich gerade als Summe der ersten n ungeraden Zahlen darstellen lässt.



Grüße
Brinki

Bezug
        
Bezug
Summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Di 14.11.2006
Autor: Brinki

Schau mal bei Wikipedia unter "Dreieckszahlen" nach.

Grüße
Brinki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de