www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Summenformel (unger. ganz. Z.)
Summenformel (unger. ganz. Z.) < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenformel (unger. ganz. Z.): Was ist "k"
Status: (Frage) beantwortet Status 
Datum: 10:44 Di 13.10.2009
Autor: Semimathematiker

Die Summenformel für die ungeraden Zahlen lautet:

[mm] \summe_{k=m}^{n} [/mm] k = (2k-1) = [mm] n^2 [/mm]

Die dazugehörige Aussage ist:
Werden die ersten ungeraden ganzen Zahlen zusammengezählt, lassen sich die Summanden stehts als Quadratzahl darstellen.

Versuch:

1                 = 1   = [mm] 1^2 [/mm]
1+3             = 4   = [mm] 2^2 [/mm]
1+3+5         = 9   = [mm] 3^2 [/mm]
...

Die Frage die ich mir hierbei stelle ist, was ist "k" in der Summenformel.
Ich löse einfach auf und stelle für die ersten 4 Quadratzahlen (1-4 zum Quadrat) fest:

[mm] \summe_{k=m}^{n} [/mm] (2k-1) = [mm] n^2 [/mm] = [mm] 1^2 [/mm]  , k=1
[mm] \summe_{k=m}^{n} [/mm] (2k-1) = [mm] n^2 [/mm] = [mm] 2^2 [/mm]  , k=2,5
[mm] \summe_{k=m}^{n} [/mm] (2k-1) = [mm] n^2 [/mm] = [mm] 3^2 [/mm]  , k=5
[mm] \summe_{k=m}^{n} [/mm] (2k-1) = [mm] n^2 [/mm] = [mm] 4^2 [/mm]  , k=8,5

Hab ich das falsch aufgelöst oder was ist da los? Ich denke "k" ist eine ungerade ganze Zahl und zwar die letzte in der Reihe der zusammengezählten ganzen ungeraden Zahlen bei 1 beginnend.

Außerdem interessiert mich die Funktionsweise von (2k-1), was mir hoffentlich klar wird wenn ich weis was "k" ist. Momentan kann ich aus diesem Term nur schließen, dass egal welche ganze Zahl ich einsetze mit "-1" immer eine ungerade rauskommen muss da das doppelte einer geraden/ungeraden immer eine gerade Zahl ist.

Vielen Dank im Voraus.
SM

        
Bezug
Summenformel (unger. ganz. Z.): Darstellung
Status: (Antwort) fertig Status 
Datum: 10:50 Di 13.10.2009
Autor: Roadrunner

Hallo Semimathematiker!


$k_$ ist die interne (Zähl-)Variable innerhalb der Summe.

Leider ist Deine Darstellung nicht korrekt. Die Summe der ersten $n_$ ungeraden Zahlen beschreibt man mit:

[mm] $$\summe^{n}_{k=\red{1}}(2k-1) [/mm] \ = \ [mm] n^2$$ [/mm]

Damit gilt nun exemplarisch:
[mm] $$\summe_{k=1}^{1}(2k-1) [/mm] \ = \ (2*1-1) \ = \ 1 \ = \ [mm] 1^2$$ [/mm]
[mm] $$\summe_{k=1}^{2}(2k-1) [/mm] \ = \ (2*1-1)+(2*2-1) \ = \ 1+3 \ = \ 4 \ = \ [mm] 2^2$$ [/mm]
[mm] $$\summe_{k=1}^{3}(2k-1) [/mm] \ = \ [mm] \underbrace{(2*1-1)}_{k=1}+\underbrace{(2*2-1)}_{k=2}+\underbrace{(2*3-1)}_{k=3} [/mm] \ = \ 1+3+5 \ = \ 9 \ = \ [mm] 3^2$$ [/mm]
usw.


Die allgemeine Gültigkeit dieser Formel kann man dann beweisen mittels vollständiger Induktion.


Gruß vom
Roadrunner


Bezug
        
Bezug
Summenformel (unger. ganz. Z.): Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Di 13.10.2009
Autor: fred97

  
> Außerdem interessiert mich die Funktionsweise von (2k-1),
> was mir hoffentlich klar wird wenn ich weis was "k" ist.
> Momentan kann ich aus diesem Term nur schließen, dass egal
> welche ganze Zahl ich einsetze mit "-1" immer eine ungerade
> rauskommen muss da das doppelte einer geraden/ungeraden
> immer eine gerade Zahl ist.


Na also ! Menge der ungeraden natürlichen Zahlen = { 2k-1: k [mm] \in \IN [/mm] }

FRED


>  
> Vielen Dank im Voraus.
>  SM


Bezug
        
Bezug
Summenformel (unger. ganz. Z.): Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Do 22.10.2009
Autor: Semimathematiker

Vielen Dank für die Darstellung. Damit ist geklärt was k ist.
Viele Grüße
SM

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de