www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - SuperMG, E konstant Martingal
SuperMG, E konstant Martingal < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

SuperMG, E konstant Martingal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Mo 15.11.2010
Autor: Bappi

Aufgabe
Es sei [mm] $(X_n,\mathcal F_n)_{n\in\mathbb N}$ [/mm] ein Super-Martingal derart, dass [mm] $\mathbb EX_n [/mm] = [mm] \text{ const}$. [/mm] Zeige, dass [mm] $(X_n)_{n\in\mathbb N}$ [/mm] bereits ein Martingal ist.

Hallo!

Es muss sehr einfach sein, nur irgendwie habe ich gerade Denkprobleme.

Ich weiß, dass [mm] $\mathbb E(X_n\mid \mathcal F_{n-1}) \leq X_{n-1}$ [/mm] und der Erwartungswert einen konstanten Wert annimmt, und irgendwie muss ich wohl mit den  "typischen" Eigenschaften der bedingten Erwartung spielen, aber...

Vlt hat jemand Denkanstöße für mich :)

        
Bezug
SuperMG, E konstant Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 Di 16.11.2010
Autor: Marc

Hallo Bappi,

es wäre nett, wenn du uns auch weiterhin auf Crossposting hinweist! :-)

> Es sei [mm](X_n,\mathcal F_n)_{n\in\mathbb N}[/mm] ein
> Super-Martingal derart, dass [mm]\mathbb EX_n = \text{ const}[/mm].
> Zeige, dass [mm](X_n)_{n\in\mathbb N}[/mm] bereits ein Martingal
> ist.
>  Hallo!
>  
> Es muss sehr einfach sein, nur irgendwie habe ich gerade
> Denkprobleme.
>  
> Ich weiß, dass [mm]\mathbb E(X_n\mid \mathcal F_{n-1}) \leq X_{n-1}[/mm]
> und der Erwartungswert einen konstanten Wert annimmt, und
> irgendwie muss ich wohl mit den  "typischen" Eigenschaften
> der bedingten Erwartung spielen, aber...

Es gilt doch [mm] $E(E(X_n\mid \mathcal F_{n-1}))=E(X_n)$ [/mm] (Eigenschaft der bedingten Erwartung)

Weiterhin [mm] $E(X_n\mid \mathcal F_{n-1}) \leq X_{n-1}$ $\Rightarrow$ $E(X_n\mid \mathcal F_{n-1}) -X_{n-1}\leq [/mm] 0$

Damit haben wir

[mm] $E(\underbrace{E(X_n\mid \mathcal F_{n-1}) -X_{n-1}}_{\leq 0})=?$ [/mm]

Was lässt sich nun über das Argument des äußeren Erwartungswerts sagen?

Viele Grüße,
Marc




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de