www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Supremum
Supremum < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:12 Di 23.11.2004
Autor: Cosmotopianerin

Hallöchen!

Ich sollte folgende Aufgabe bearbeiten:

Bestimmen sie Sup, Inf und geben sie an, ob es sich um ein Min oder Max handelt.

A:= [mm] \{\summe_{k=1}^{n} \bruch{1}{3 ^{k}} : n \varepsilon \IN \} [/mm]

Das Inf ist ja klar. Beim Sup habe ich mit der Konvergenz gearbeitet, und zwar mit der geometrischen Reihe:

[mm] \summe_{n=0}^{ \infty} q^{n}=\bruch{1}{1-q} [/mm]

Ich habe, da die 0 nicht eingeschlossen ist, 1/2 rausbekommen und das stimmt ja.

Da ich das in der VO nicht hatten, weiß ich nicht ob ich das so machen kann. Ich hoffe ihr könnt mir weiterhelfen.


Viele Grüße

Cosmotopianerin


        
Bezug
Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 03:46 Mi 24.11.2004
Autor: Marcel

Hallo,

> Hallöchen!
>  
> Ich sollte folgende Aufgabe bearbeiten:
>  
> Bestimmen sie Sup, Inf und geben sie an, ob es sich um ein
> Min oder Max handelt.
>  
> A:= [mm]\{\summe_{k=1}^{n} \bruch{1}{3 ^{k}} : n \varepsilon \IN \} [/mm]
>  
>
> Das Inf ist ja klar.

Ja, aber man sollte es dennoch angeben (bei mir ist [mm] $\IN=\{1,2,3,4,5,...\}$; [/mm] bei euch auch? Oder gehört die $0$ bei euch zu [mm] $\IN$?): [/mm]
[mm] $Inf(A)=Min(A)=\frac{1}{3}$ [/mm]
Begründung?

> Beim Sup habe ich mit der Konvergenz
> gearbeitet, und zwar mit der geometrischen Reihe:
>  
> [mm]\summe_{n=0}^{ \infty} q^{n}=\bruch{1}{1-q} [/mm]

> Ich habe, da die 0 nicht eingeschlossen ist, 1/2
> rausbekommen und das stimmt ja.

Ahso, du meinst beim Index fehlt die Null. Dann erhält man:
[mm] $\frac{1}{\left(1-\frac{1}{3}\right)}-1=\frac{1}{2}$. [/mm] Okay! :-)
  

> Da ich das in der VO nicht hatten, weiß ich nicht ob ich
> das so machen kann. Ich hoffe ihr könnt mir weiterhelfen.

Naja, du darfst das schon benutzen, um das Supremum zu finden. Wenn du das allerdings als Lösung mit angibst, und es in der Vorlesung noch nicht drankam, dann mußt du halt vorher die Sachen, die du anwendest, beweisen. Das ist hier ja nicht schwierig, ich denke, dass du das hinbekommst, oder?
So, jetzt solltest du aber vielleicht noch nachweisen (mit der Definition aus der Vorlesung), dass [mm] $\frac{1}{2}$ [/mm] Supremum dieser Menge $A$ ist. Der Nachweis der oberen Schranke dürfte kein Problem sein. Dass es die kleinste obere Schranke ist, ist schon etwas kniffliger, weil ihr vermutlich noch nicht viel (oder gar nichts) über Reihen erfahren habt. Vielleicht ziehst du dich dann auf die Partialsummenfolge zurück (das passt ja auch zu der Menge, die in der Aufgabe gegeben ist) und argumentierst dann mit dem, was du über Folgen weißt (das wird später eh sehr oft genauso gehandhabt).
Hmmm. Na gut, am besten, du beweißt vorher die geometrische Summenformel und den anderen Quark, dann hat man das alles auch sehr schnell ohne qualvolle Rechnungen abgehandelt. :-)
(Wenn ich länger drüber nachdenke, weiß ich auch gar nicht, ob man das ohne die geometrische Summenformel und ohne die geometrische Reihe nachweisen kann. Ist wohl schon zu spät. Ich gehe mal lieber schlafen. [gutenacht])

Was noch fehlt: Ist dieses Supremum denn auch ein Maximum?  

Viele Grüße
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de