Supremum, Infimum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | $sup(-A)= -inf(A), inf(-A)=-sup(A)$ falls [mm] $A\not=\emptyset$ [/mm] eine beschränkte Teilmenge von [mm] $\IR$ [/mm] ist. |
Hallo,
ich weiß ob man das so machen kann.
Sei A wie oben vorgegeben. D.h. A besitzt supremum.
D.h. [mm] $x_0=sup(A)$ [/mm] dann gilt doch für jedes $x [mm] \in [/mm] A , x [mm] \le x_0 \gdw -x_0\le-x$
[/mm]
d.h. doch das [mm] $-x_0 [/mm] $ ein untere Schranke für $-A$ ist.
Desweiteren gilt doch das wenn [mm] $y_0$ [/mm] ein obere Schranke von $A$ ist, das [mm] $x_0 \le y_0 [/mm] $ daraus kann ich doch ableiten , dass [mm] $-y_0 \le -x_0 [/mm] $ , d.h. doch wenn [mm] $y_0$ [/mm] ein obere Schranke ist von $A$, ist sie eine untere Schranke von $-A$.
Damit habe ich doch $inf(-A)=-sup(A)$ gezeigt.
Da $-(-A)$ gilt, kann ich doch sagen,
$-inf(A)=-inf(-(-A))=-sup(-A)$weiter weiß ich leider nicht mehr.
Ich hoffe ich könnte mir etwas dazu sagen. Danke freshstyle
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:24 Do 28.02.2008 | Autor: | Marcel |
Hallo,
> [mm]sup(-A)= -inf(A), inf(-A)=-sup(A)[/mm] falls [mm]A\not=\emptyset[/mm]
> eine beschränkte Teilmenge von [mm]\IR[/mm] ist.
> Hallo,
> ich weiß ob man das so machen kann.
> Sei A wie oben vorgegeben. D.h. A besitzt supremum.
> D.h. [mm]x_0=sup(A)[/mm] dann gilt doch für jedes [mm]x \in A , x \le x_0 \gdw -x_0\le-x[/mm]
>
> d.h. doch das [mm]-x_0[/mm] ein untere Schranke für [mm]-A[/mm] ist.
In der Tat, ganz allgemein gilt:
Jede obere Schranke von $A$ ist eine untere Schranke für $-A$. Die Begründung dazu findet man in Deiner Argumentation.
> Desweiteren gilt doch das wenn [mm]y_0[/mm] ein obere Schranke von
> [mm]A[/mm] ist, das [mm]x_0 \le y_0[/mm] daraus kann ich doch ableiten , dass
> [mm]-y_0 \le -x_0[/mm] , d.h. doch wenn [mm]y_0[/mm] ein obere Schranke ist
> von [mm]A[/mm], ist sie
Du meinst hier mit "sie" allerdings nicht [mm] $y_0$, [/mm] sondern [mm] $\blue{-}$ $y_0$
[/mm]
> eine untere Schranke von [mm]-A[/mm].
> Damit habe ich doch [mm]inf(-A)=-sup(A)[/mm] gezeigt.
Ja, das klingt doch gut, allerdings muss man die Reihenfolge der Argumentation ein wenig einhalten, denn wenn nicht $r [mm] \le [/mm] s [mm] \gdw [/mm] -s [mm] \le [/mm] -r$ gelten würde, wäre die Argumentation zu bemängeln. Ich würde es z.B. so notieren (halt ein wenig ausführlicher, wie Du es getan hast):
Sei also [mm] $S:=\sup [/mm] A$ (Du hast das [mm] $x_0$ [/mm] genannt, aber $S$ finde ich "passender" ).
Behauptung:
[mm] $-S=\inf [/mm] (-A)$.
1.) Du zeigst: $-S$ ist eine untere Schranke für $-A$:
Sei $x [mm] \in [/mm] (-A)$ beliebig. Dann ist $-x [mm] \in [/mm] A$ nach Definition von $(-A)$. Daher gilt $-x [mm] \le [/mm] S$ nach Definition von $S$. Daraus folgt $-S [mm] \le [/mm] x$. Da $x [mm] \in [/mm] (-A)$ beliebig war, ist $-S$ eine untere Schranke für $(-A)$.
2.) Du beachtest, dass [mm] $(\*)$ $\{-x: x \in (-A)\}=A$ [/mm] gilt (was klar ist, da $a [mm] \in [/mm] A [mm] \gdw [/mm] -a [mm] \in [/mm] (-A)$ nach Definition von $(-A)$):
Ist $m$ eine untere Schranke von $(-A)$, so hast Du zu zeigen, dass $m [mm] \le [/mm] -S$ gilt. Ist $m$ nun eine untere Schranke von $(-A)$, so gilt $m [mm] \le [/mm] x$ für alle $x [mm] \in [/mm] -A$. Daraus folgt $m [mm] \le [/mm] -a$ für alle $a [mm] \in [/mm] A$ bzw. $a [mm] \le [/mm] -m$ für alle $a [mm] \in [/mm] A$ (beachte [mm] $(\*)$). [/mm] Nach Definition von $S$ folgt dann aber $S [mm] \le [/mm] -m$ (denn $-m$ ist eine obere Schranke von $A$), also $m [mm] \le [/mm] -S$.
Insgesamt:
$-S$ ist eine untere Schranke von $(-A)$, und jede weitere untere Schranke $m$ von $(-A)$ erfüllt $m [mm] \le [/mm] -S$, also [mm] $-S=\inf(-A)$ [/mm] bzw. [mm] $-\sup(A)=\inf(-A)$.
[/mm]
Wie gesagt:
Eigentlich ist Deine Ausführung schon gut, ich wollte nur "noch" genauer
argumentieren, damit man auch wirklich sieht, dass die Eigenschaften "Supremum=kleinste obere Schranke" bzw. "Infimum=größte untere Schranke" hier auch wirklich zum Tragen kommen.
> Da [mm]-(-A)[/mm] gilt, kann ich doch sagen,
Du wolltest sagen:
[mm] $(\*\*)$ [/mm] $-(-A)=A$
Ich glaube, ich habe das oben schonmal begründet, falls nicht, geht es jedenfalls auch so:
[mm] $-(-A)=\{-x: x \in -A\}=\{y: -y \in -A\}=\{a: a \in A\}=A$
[/mm]
> [mm]-inf(A)=-inf(-(-A))=-sup(-A)[/mm]weiter weiß ich leider nicht
> mehr.
Naja, hier machst Du ja auch ein wenig Unsinn, denn wie gelangst Du zu der Gleichung [mm] $-\inf(-(-A))=-\sup(-A)$? [/mm] Da hat sich ein Vorzeichenfehler eingeschlichen
Bisheriges Wissen:
(I)
(1.) $-(-A)=A$
(2.) [mm] $-\sup(A)=\inf(-A)$
[/mm]
Noch zu zeigen:
(II) [mm] $\sup(-A)=-\inf(A)$
[/mm]
Begründung zu (II):
[mm] $-\inf(A)=-\inf(-(-A))$ [/mm] wegen $(I)$ (1.).
Wegen $(I)$ (2.) (mit (-A) anstelle von $A$) folgt dann:
[mm] $-\inf(A)=-\inf(-(-A))=-(-\sup(-A))=\sup(-A)$
[/mm]
Das war's schon, Du hattest einfach ein "Minus" verschlampt.
Gruß,
Marcel
|
|
|
|