www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Supremums-Norm
Supremums-Norm < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremums-Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Di 21.04.2009
Autor: MaRaQ

Aufgabe
Der Vektorraum V := [mm] C^0([a,b]) [/mm] werde mit der Supremums-Norm ||f|| := [mm] sup_{[a,b]}|f| [/mm] versehen. Zeigen Sie:

a) Eine Folge [mm] (f_n) [/mm] in V konvergiert genau dann bezüglich der Supremums-Norm gegen ein f [mm] \in [/mm] V, wenn die Funktionenfolge [mm] (f_n) [/mm] gleichmäßig gegen f konvergiert.
b) Zeigen Sie, dass die Folge [mm] f_n(x) [/mm] := [mm] x^n [/mm] in V zwar beschränkt ist, dass sie aber keine konvergente Teilfolge besitzt.

Frage 1: Was ist [mm] C^0 [/mm] (seltsam geschlängeltes C) für ein Vektorraum? Was hat er für Eigenschaften? Besitzt er einen speziellen Namen damit ich ihn mal in einschlägiger Literatur suchen kann?

Solange ich das nicht weiß, macht es momentan wenig Sinn, genauer auf die Aufgabe einzugehen. Falls ich dort weitere Fragen ergeben, würde ich mich wieder melden. ;-)

        
Bezug
Supremums-Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Di 21.04.2009
Autor: felixf

Hallo!

> Der Vektorraum V := [mm]C^0([a,b])[/mm] werde mit der Supremums-Norm
> ||f|| := [mm]sup_{[a,b]}|f|[/mm] versehen. Zeigen Sie:
>  
> a) Eine Folge [mm](f_n)[/mm] in V konvergiert genau dann bezüglich
> der Supremums-Norm gegen ein f [mm]\in[/mm] V, wenn die
> Funktionenfolge [mm](f_n)[/mm] gleichmäßig gegen f konvergiert.
>  b) Zeigen Sie, dass die Folge [mm]f_n(x)[/mm] := [mm]x^n[/mm] in V zwar
> beschränkt ist, dass sie aber keine konvergente Teilfolge
> besitzt.
>
>  Frage 1: Was ist [mm]C^0[/mm] (seltsam geschlängeltes C) für ein
> Vektorraum?

Normalerweise bezeichnet man mit [mm] $C^k(I)$ [/mm] fuer ein Intervall $I$ den Vektorraum der Funktionen $I [mm] \to \IR$, [/mm] die $k$-mal stetig differenzierbar sind. Fuer $k = 0$ heisst das also, dass sie stetig sind.

> Was hat er für Eigenschaften?

Er ist unendlichdimensional. Und er besitzt eine multiplikative Struktur.

> Besitzt er einen speziellen Namen damit ich ihn mal in einschlägiger Literatur suchen kann?

Er wird fast immer als [mm] $C^0$ [/mm] bezeichnet (bzw. [mm] $\mathcal{C}^0$ [/mm] oder so).

> Solange ich das nicht weiß, macht es momentan wenig Sinn,
> genauer auf die Aufgabe einzugehen. Falls ich dort weitere
> Fragen ergeben, würde ich mich wieder melden. ;-)

Ok :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de