www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Suprenum/Teilmenge
Suprenum/Teilmenge < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Suprenum/Teilmenge: Beweis
Status: (Frage) beantwortet Status 
Datum: 11:50 Mo 06.02.2012
Autor: yangwar1

Aufgabe
Zu jedem [mm] \varepsilon [/mm] existiert ein x [mm] \in [/mm] A mit sup A - [mm] \varepsilon [/mm] < x < sup A (A nichtleere Teilmenge von [mm] \IR [/mm] ohne Maximum

Die rechte Ungleichung ist klar.
Bei der zweiten Ungleichung habe ich ein Problem. Und zwar habe ich noch ein Verständniseprobleme mit Aussagen wie, "zu jedem [mm] \varepsilon [/mm] > 0 gibt es ein x aus ...".
Ich habe den Beweis für die erste Ungleichung als Lösung und schreibe diese einfach einmal hier herein.

Beweis: Angenommen, für alles x [mm] \in [/mm] A gilt x < oder = sup A - [mm] \varepsilon. [/mm] Dann ist sup A - [mm] \varepsilon [/mm] eine obere Schranke von A, die kleiner ist als sup A. Dies kann aber nicht sein, denn sup A ist die kleinste obere Schranke. Also gibt es ein x aus A mit sup A - [mm] \varepsilon [/mm] < x.

Behauptet wird also, dass für ale Epsilon größer 0 ein x aus A existiert.
Da hier ein Widerspruchsbeweis geführt wird, muss also gesagt werden: ES gibt ein Epsilon größer 0, sodass für alle x aus A gilt...

Ist das so richtig? Man muss also immer nur die Quantoren negieren?

        
Bezug
Suprenum/Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 06.02.2012
Autor: leduart

Hallo
in deinem Beweis fehlt, dass A kein max hat, also kann er so nicht stimmen. denn wenn A nur die Menge {1,2} ist supA=2 [mm] \epsilon=1.1? [/mm]
Gruss leduart

Bezug
        
Bezug
Suprenum/Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Mo 06.02.2012
Autor: fred97


> Zu jedem [mm]\varepsilon[/mm] existiert ein x [mm]\in[/mm] A mit sup A -
> [mm]\varepsilon[/mm] < x < sup A (A nichtleere Teilmenge von [mm]\IR[/mm]
> ohne Maximum
>  Die rechte Ungleichung ist klar.

Mir nicht.

Da soll wohl  x  [mm] \le [/mm]  sup A  stehen.



>  Bei der zweiten Ungleichung habe ich ein Problem. Und zwar
> habe ich noch ein Verständniseprobleme mit Aussagen wie,
> "zu jedem [mm]\varepsilon[/mm] > 0 gibt es ein x aus ...".
> Ich habe den Beweis für die erste Ungleichung als Lösung
> und schreibe diese einfach einmal hier herein.
>
> Beweis: Angenommen, für alles x [mm]\in[/mm] A gilt x < oder = sup
> A - [mm]\varepsilon.[/mm] Dann ist sup A - [mm]\varepsilon[/mm] eine obere
> Schranke von A, die kleiner ist als sup A. Dies kann aber
> nicht sein, denn sup A ist die kleinste obere Schranke.
> Also gibt es ein x aus A mit sup A - [mm]\varepsilon[/mm] < x.
>  
> Behauptet wird also, dass für ale Epsilon größer 0 ein x
> aus A existiert


.....  mit x>sup A - [mm] \varepsilon. [/mm]


>  Da hier ein Widerspruchsbeweis geführt wird, muss also
> gesagt werden: ES gibt ein Epsilon größer 0, sodass für
> alle x aus A gilt...

             x [mm] \le [/mm] sup A - [mm] \varepsilon [/mm]

>  
> Ist das so richtig?

Ja





> Man muss also immer nur die Quantoren negieren?

negieren ? Nein: umdrehen

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de