www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Surjekt./Injekt.-Beweis
Surjekt./Injekt.-Beweis < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjekt./Injekt.-Beweis: Idee
Status: (Frage) beantwortet Status 
Datum: 14:15 So 06.03.2011
Autor: Matti87

Aufgabe
Seien f : A→ B und g : B→C Funktionen. Man beweise oder widerlege (durch Angabe
eines Gegenbeispiels), dass für alle Mengen A, B, C folgende Behauptung richtig ist:

Wenn f surjektiv und g nicht injektiv ist, so ist g [mm] \circ [/mm] f nicht injektiv.


Ich habe die Aufgabe in soweit durchblickt, dass ich in Worten begründen könnte, dass diese Behauptung richtig ist.
Ich würde sogar soweit gehen und behaupten, dass wenn f surjektiv ist, dass g [mm] \circ [/mm] f die gleiche Eigenschaft wie die Funktion g annimmt.
Weil wenn die Funktion f alle b in B trifft, dann ist nur noch relevant, welche c in C von der Funktion g getroffen werden.
Oder sehe ich das falsch?

Nun zu meinem Ansatz:

Sei f surjektiv und g nicht injektiv vorausgesetzt.

Dann ist zuzeigen: [mm] \exists [/mm] a1, a2 [mm] \in [/mm] A :  g [mm] \circ [/mm] f (a1) = g [mm] \circ [/mm] f (a2)  [mm] \Rightarrow [/mm]  a1 [mm] \not= [/mm] a2


Oder ist ein Beweis durch Widersprich einfacher? Beides ist mir nicht so recht gelungen.
Vielleicht kann mir jemand einen Tipp geben. Danke schonmal!

        
Bezug
Surjekt./Injekt.-Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 So 06.03.2011
Autor: kamaleonti

Hi,
> Seien f : A→ B und g : B→C Funktionen. Man beweise oder
> widerlege (durch Angabe
>  eines Gegenbeispiels), dass für alle Mengen A, B, C
> folgende Behauptung richtig ist:
>  
> Wenn f surjektiv und g nicht injektiv ist, so ist g [mm]\circ[/mm] f
> nicht injektiv.
>  Ich habe die Aufgabe in soweit durchblickt, dass ich in
> Worten begründen könnte, dass diese Behauptung richtig
> ist.
>  Ich würde sogar soweit gehen und behaupten, dass wenn f
> surjektiv ist, dass g [mm]\circ[/mm] f die gleiche Eigenschaft wie
> die Funktion g annimmt.
>  Weil wenn die Funktion f alle b in B trifft, dann ist nur
> noch relevant, welche c in C von der Funktion g getroffen
> werden.
>  Oder sehe ich das falsch?

Stimmt schon

>  
> Nun zu meinem Ansatz:
>  
> Sei f surjektiv und g nicht injektiv vorausgesetzt.
>  
> Dann ist zuzeigen: [mm]\exists[/mm] a1, a2 [mm]\in[/mm] A :  g [mm]\circ[/mm] f (a1) =
> g [mm]\circ[/mm] f (a2)  [mm]\Rightarrow[/mm]  a1 [mm]\not=[/mm] a2

Beweisskizze:
1) Es gibt [mm] b_1,b_2\in [/mm] B mit [mm] b_1\neq b_2 [/mm] und [mm] g(b_1)=g(b_2) [/mm] (warum?)
2) Es gibt [mm] a_1\in [/mm] A mit [mm] f(a_1)=b_1, a_2\in [/mm] A mit [mm] f(a_2)=b_2 [/mm] (warum?). Insbesondere ist [mm] $a_1\neq a_2$. [/mm]
3) [mm] g\circ f(a_1)=g\circ f(a_2) [/mm] mit [mm] a_1\neq a_2. [/mm] (warum?). Also ist die Verknüpfung nicht injektiv.

LG

Bezug
                
Bezug
Surjekt./Injekt.-Beweis: Idee
Status: (Frage) beantwortet Status 
Datum: 16:25 So 06.03.2011
Autor: Matti87

Aufgabe
Seien f : A → B und g : B → C Funktionen. Man beweise oder widerlege (durch Angabe
eines Gegenbeispiels), dass für alle Mengen A, B, C folgende Behauptung richtig ist:

Wenn f surjektiv und g nicht injektiv ist, so ist g $ [mm] \circ [/mm] $ f nicht injektiv.

> > Nun zu meinem Ansatz:
>  >  
> > Sei f surjektiv und g nicht injektiv vorausgesetzt.
>  >  
> > Dann ist zuzeigen: [mm]\exists[/mm] a1, a2 [mm]\in[/mm] A :  g [mm]\circ[/mm] f (a1) =
> > g [mm]\circ[/mm] f (a2)  [mm]\Rightarrow[/mm]  a1 [mm]\not=[/mm] a2

>  Beweisskizze:
>  1) Es gibt [mm]b_1,b_2\in[/mm] B mit [mm]b_1\neq b_2[/mm] und [mm]g(b_1)=g(b_2)[/mm]
> (warum?)

Weil die Funktion g nicht injektiv ist,
gilt die Kontroposition der Injektivitätsdefinition.

>  2) Es gibt [mm]a_1\in[/mm] A mit [mm]f(a_1)=b_1, a_2\in[/mm] A mit
> [mm]f(a_2)=b_2[/mm] (warum?). Insbesondere ist [mm]a_1\neq a_2[/mm].

Wegen der Surjektivität. Aber warum gilt hier insbesonder [mm] a_1\neq a_2 [/mm] ???

>  3)
> [mm]g\circ f(a_1)=g\circ f(a_2)[/mm] mit [mm]a_1\neq a_2.[/mm] (warum?). Also
> ist die Verknüpfung nicht injektiv.
>  
> LG

Bezug
                        
Bezug
Surjekt./Injekt.-Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 So 06.03.2011
Autor: kamaleonti

Hallo,
> Seien f : A → B und g : B → C Funktionen. Man beweise
> oder widerlege (durch Angabe
>  eines Gegenbeispiels), dass für alle Mengen A, B, C
> folgende Behauptung richtig ist:
>  
> Wenn f surjektiv und g nicht injektiv ist, so ist g [mm]\circ[/mm] f
> nicht injektiv.
>  > > Nun zu meinem Ansatz:

>  >  >  
> > > Sei f surjektiv und g nicht injektiv vorausgesetzt.
>  >  >  
> > > Dann ist zuzeigen: [mm]\exists[/mm] a1, a2 [mm]\in[/mm] A :  g [mm]\circ[/mm] f (a1) =
> > > g [mm]\circ[/mm] f (a2)  [mm]\Rightarrow[/mm]  a1 [mm]\not=[/mm] a2
>  
> >  Beweisskizze:

>  >  1) Es gibt [mm]b_1,b_2\in[/mm] B mit [mm]b_1\neq b_2[/mm] und
> [mm]g(b_1)=g(b_2)[/mm]
> > (warum?)
>  
> Weil die Funktion g nicht injektiv ist, [ok]
>  gilt die Kontroposition der Injektivitätsdefinition.
>  
> >  2) Es gibt [mm]a_1\in[/mm] A mit [mm]f(a_1)=b_1, a_2\in[/mm] A mit

> > [mm]f(a_2)=b_2[/mm] (warum?). Insbesondere ist [mm]a_1\neq a_2[/mm].
>  
> Wegen der Surjektivität von f. [ok] Aber warum gilt hier insbesonder
> [mm]a_1\neq a_2[/mm] ???

Wäre anderfalls [mm] a_1=a_2, [/mm] so wäre [mm] f(a_1)=f(a_2), [/mm] aber [mm] f(a_1)=b_1\neq b_2=f(a_2). [/mm]
Das ist eine allgemeingültige Abbildungseigenschaft (eindeutige Zuordnung)

>  
> >  3)

> > [mm]g\circ f(a_1)=g\circ f(a_2)[/mm] mit [mm]a_1\neq a_2.[/mm]. Also
> > ist die Verknüpfung nicht injektiv.
>  >  
> > LG  

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de