www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Surjektion, Injektion
Surjektion, Injektion < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektion, Injektion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:10 Di 07.11.2006
Autor: zetamy

Aufgabe
Beweisen Sie folgende Aussagen:
a) [mm]f: X\to Y[/mm] ist genau dann surjektiv, wenn für beliebige Abbildungen [mm]g_1, g_2:Y\to Z[/mm] aus [mm]g_1\circ f=g_2\circ f[/mm] die Beziehung [mm]g_1=g_2[/mm] folgt.

b) [mm]g:X\to Z[/mm] ist genau dann injektiv, wenn für beliebige Abbildungen [mm]f_1, f_2: X\to Y[/mm] aus [mm]g\circ f_1=g\circ f_2[/mm] folgt.

Hallo,

meine Lösungen scheinen mir selbst nicht ganz schlüssig. Bin für jeden Tipp/jede Korrektur dankbar.

a) Sei f surjektiv, also gilt: [mm]\forall y\in Y \exists x\in X[/mm] mit [mm]f(x)=y [/mm] und seien [mm]g_1, g_2: Y\to Z[/mm] beliebige Abbildungen mit [mm]g_1(y)=z[/mm] und [mm]g_2(y)=z \forall y\in Y[/mm]. Dann existiert [mm]\forall z\in Z[/mm], für die [mm]g_1(y)=z[/mm] gilt, min ein [mm]x\in X[/mm] mit [mm]g_1(y)=g_1(f(x))=(g_1\circ f)(x)=z[/mm]. Ebenso für g2. Daraus folgt [mm]g_1\circ f=g_2\circ f[/mm], wenn gilt [mm] g_1=(g_2\circ f)\circ f=g_2\circ(f\circ f)=g_2[/mm].
Dann ist jedem [mm] z\in Z [/mm], für das gilt [mm] (g\circ f)=z [/mm] auch min ein [mm] y\in Y [/mm] zugeordnet und daher jedem [mm] y\in Y [/mm] min ein [mm] x\in X [/mm], also f surjektiv.

b) Sei g injektiv, so gilt laut Def [mm]\forall z\in Z[/mm] existiert höchstens ein [mm]y\in Y[/mm], und seien [mm]f_1, f_2[/mm] beliebige Abb. Da zudem jedem [mm]x\in X[/mm] genau ein [mm]y\in Y[/mm] und jedem [mm]y\in Y[/mm] genau ein [mm]z\in Z[/mm] zugeordnet ist, existiert für jedes [mm]x\in X[/mm] genau ein [mm]z\in Z[/mm]. Dann existiert für alle [mm]x\in X[/mm] mit [mm]f_1(x)=y[/mm] bzw [mm]f_2(x)=x[/mm], für die g(y)=z gilt, auch ein [mm]z\in Z[/mm] mit [mm](g\circ f_1)(x)=z[/mm] bzw [mm](g\circ f_2)(x)=z[/mm]. Da g injektiv folgt, [mm]g\circ f_1=g\circ f_2=z[/mm], also [mm]f_1=g\circ(g\circ f_2)=(g\circ g)\circ f_2=f_2[/mm].
Dann ist jedem [mm]x\in X[/mm], für das f(x)=y gilt, genau ein [mm]z\in Z[/mm] zugeordnet. Da f beliebig, muss g inj sein.


Hoffentich ist das kein zu großer Schwachsinn ;-).

Vielen Dank nochmal, zetamy.

        
Bezug
Surjektion, Injektion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 07.11.2006
Autor: DaMenge

Hallo,


>  
> a) Sei f surjektiv, also gilt: [mm]\forall y\in Y \exists x\in X[/mm]
> mit [mm]f(x)=y[/mm] und seien [mm]g_1, g_2: Y\to Z[/mm] beliebige Abbildungen
> mit [mm]g_1(y)=z[/mm] und [mm]g_2(y)=z \forall y\in Y[/mm]. Dann existiert
> [mm]\forall z\in Z[/mm], für die [mm]g_1(y)=z[/mm] gilt, min ein [mm]x\in X[/mm] mit
> [mm]g_1(y)=g_1(f(x))=(g_1\circ f)(x)=z[/mm]. Ebenso für g2. Daraus
> folgt [mm]g_1\circ f=g_2\circ f[/mm], wenn gilt [mm]g_1=(g_2\circ f)\circ f=g_2\circ(f\circ f)=g_2[/mm].
>  

da steckt schon der Wurm drin.
mach es mal ganz richtig indem du beide Richtungen seperat zeigst, also:
1) sei f surjektiv, dann folgt : "aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm]

2) es gelte : "aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm] dann folgt daraus, dass f surjektiv ist.

zu 1) f sei surjektiv und es gelte  [mm]g_1\circ f=g_2\circ f[/mm] , angenommen es würde dann nicht gelten, dass [mm] g_1=g_2 [/mm] ist, dann gibt es also ein y mit [mm] $g_1(y)\not= g_2(y)$ [/mm] , zu diesem y gibt es aber wegen der surjektivität von f ein x, so dass...
schaffst du den rest hier von 1)  ?

zu 2) es gelte für BELIEBIGE [mm] g_1 [/mm] und [mm] g_2 [/mm] die Aussage:
"aus [mm]g_1\circ f=g_2\circ f[/mm] folgt [mm] g_1=g_2" [/mm] , angenommen f sei nicht surjektiv, d.h. es gibt ein y, dass "nicht getroffen wird", was passiert wenn du dir [mm] g_1 [/mm] und [mm] g_2 [/mm] wählst mit [mm] $g_1(y)\not= g_2(y)$ [/mm] ?!?

>  
> b) Sei g injektiv, so gilt laut Def [mm]\forall z\in Z[/mm]
> existiert höchstens ein [mm]y\in Y[/mm], und seien [mm]f_1, f_2[/mm]
> beliebige Abb. Da zudem jedem [mm]x\in X[/mm] genau ein [mm]y\in Y[/mm] und
> jedem [mm]y\in Y[/mm] genau ein [mm]z\in Z[/mm] zugeordnet ist, existiert für
> jedes [mm]x\in X[/mm] genau ein [mm]z\in Z[/mm]. Dann existiert für alle [mm]x\in X[/mm]
> mit [mm]f_1(x)=y[/mm] bzw [mm]f_2(x)=x[/mm], für die g(y)=z gilt, auch ein
> [mm]z\in Z[/mm] mit [mm](g\circ f_1)(x)=z[/mm] bzw [mm](g\circ f_2)(x)=z[/mm]. Da g
> injektiv folgt, [mm]g\circ f_1=g\circ f_2=z[/mm],

ja, bis hierhin scheint es zwar nicht wirklich voran zu kommen, aber es ist zumindest nicht falsch.


> also
> [mm]f_1=g\circ(g\circ f_2)=(g\circ g)\circ f_2=f_2[/mm].


Das hier ergibt keinen Sinn - rein von der Schreibweise kannst du nicht g nach g schreiben... (war im Teil a) auch schon falsch)

>  Dann ist
> jedem [mm]x\in X[/mm], für das f(x)=y gilt, genau ein [mm]z\in Z[/mm]
> zugeordnet. Da f beliebig, muss g inj sein.

versuch doch auch hier mal beide Richtungen seperat (und am einfachsten mit Widerspruch) zu führen, denn die zweite Richtung hast du versucht da im letzten Satz unterzubringen, was eindeutig zu wenig ist.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de