www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Surjektiv und nicht Injektiv?
Surjektiv und nicht Injektiv? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektiv und nicht Injektiv?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Fr 10.02.2006
Autor: alx3400

Hallo,
Das wird wohl erstmal die letzte Frage im LA-Forum sein, schreibe morgen Klausur.

Die Frage: Kann ein Endemorphismus surjektiv, aber nicht injektiv sein?

Ich stelle mir das so vor: Ist die Abbildung nicht injektiv, so ist dim(Kern(f)) größer als 0. Dann muss dim(Bild(f)) kleiner sein als die Dimension des zugrunde liegenden Vektorraums. Dann kann die Abbildung doch nicht mehr surjektiv sein oder?

Wie ist das für Abbildungen f: V [mm] \mapsto [/mm] W ?

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Surjektiv und nicht Injektiv?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Fr 10.02.2006
Autor: SEcki


> Die Frage: Kann ein Endemorphismus surjektiv, aber nicht
> injektiv sein?

Sind die Vektorräumeendlich-dimensional oder auch unendlich-dimensional? Für letztere kann es nämlich welche geben ...

> Ich stelle mir das so vor: Ist die Abbildung nicht
> injektiv, so ist dim(Kern(f)) größer als 0. Dann muss
> dim(Bild(f)) kleiner sein als die Dimension des zugrunde
> liegenden Vektorraums. Dann kann die Abbildung doch nicht
> mehr surjektiv sein oder?

Prinzipiell richtig - man setzt halt einfach was man weiss in den Dimensionssatz ein, und erhält dann einen Widerspruch.

> Wie ist das für Abbildungen f: V [mm]\mapsto[/mm] W ?

Da kann es sicher welche geben ... was die Bedingungen an V und w sind (endlich dimensionale V, W!) ergibt wieder der Dimensionssatz.

SEcki

Bezug
                
Bezug
Surjektiv und nicht Injektiv?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Fr 10.02.2006
Autor: alx3400

Danke für die Antwort.

Hatte intuitiv erstmal nur an endlich-dimensionale Verktorräume gedacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de