www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Surjektive Abbildung N -> Q
Surjektive Abbildung N -> Q < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektive Abbildung N -> Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Sa 15.11.2014
Autor: Valkyrion

Aufgabe
a) Bestimme eine surjektive Abbildung von ℕ nach ℚ.
b) Folgere aus a), dass es überabzählbar viele irra-
   tionale Zahlen gibt.

zu a)
[mm] f:\IN \mapsto \IQ [/mm]
Sei n [mm] \in \IN: [/mm]

[mm] f(n)=\bruch{1}{n} [/mm] genügt der Anforderung [mm] f:\IN \mapsto \IQ^{+} [/mm] aber nicht gesamt [mm] \IQ [/mm] und ist auch nicht surjektiv sondern injektiv
quadratische Funktionen können surjektiv sein, wenn man den Definitionsbereich entsprechend wählt bzw. sie entsprechend verschiebt: Durch Verschiebung entlang der x-Achse lässt sich die Surjektivitätsanforderung erfüllen  und durch Verschiebung an der y-Achse die Anforderung: [mm] f:\IN \mapsto \IQ [/mm] gesamt:

f(n)= [mm] (\bruch{1}{n}-n)^{2}-4n; [/mm]
Liege ich mit meinem Lösungsversuch richtig?

zu b)
Sind hier Cantors Diagonalargumente hilfreich?



        
Bezug
Surjektive Abbildung N -> Q: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Sa 15.11.2014
Autor: justdroppingby

hi,

> a) Bestimme eine surjektive Abbildung von ℕ nach ℚ.
>  b) Folgere aus a), dass es überabzählbar viele irra-
>     tionale Zahlen gibt.
>  zu a)
>  [mm]f:\IN \mapsto \IQ[/mm]
>  Sei n [mm]\in \IN:[/mm]
>  
> [mm]f(n)=\bruch{1}{n}[/mm] genügt der Anforderung [mm]f:\IN \mapsto \IQ^{+}[/mm]
> aber nicht gesamt [mm]\IQ[/mm] und ist auch nicht surjektiv sondern
> injektiv
>  quadratische Funktionen können surjektiv sein, wenn man
> den Definitionsbereich entsprechend wählt

und den Wertebereich. Eine quadr. Funktion $f: [mm] \mathbb [/mm] R [mm] \to \mathbb [/mm] R$ hat immer ein Maximum oder ein Minimum. Damit auch jede quadr. Fkt.
$f: [mm] \mathbb [/mm] Q [mm] \to \mathbb [/mm] Q$  

>  bzw. sie
> entsprechend verschiebt: Durch Verschiebung entlang der
> x-Achse lässt sich die Surjektivitätsanforderung
> erfüllen

Ich wüßte nicht wie das gehen soll.

>  und durch Verschiebung an der y-Achse die
> Anforderung: [mm]f:\IN \mapsto \IQ[/mm] gesamt:

Auch hier seh ich nicht wie das funktionieren soll.  Die Verschiebung müsste doch unendlich sein, denn jede endliche Verschiebung um t macht aus [mm] $\mathbb [/mm] Q^+$ doch nur [mm] $\{q \in )-t, \infty[ | a \in \mathbb Q \}$ [/mm]  

> f(n)= [mm](\bruch{1}{n}-n)^{2}-4n;[/mm]
>  Liege ich mit meinem Lösungsversuch richtig?

Die Funktion ist weder surjektiv noch injektiv.
(Und sie ist auch nicht quadratisch in n)

> zu b)
>  Sind hier Cantors Diagonalargumente hilfreich?

Ja, Genauso in der a)

>  


Bezug
                
Bezug
Surjektive Abbildung N -> Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 15.11.2014
Autor: Valkyrion

Um die Anforderungen an die gesuchte Funktion mal etwas umgangssprachlicher auszudrücken:
- Die Funktionskurve befindet sich nur rechts von der
  y-Achse (wegen [mm] \IN). [/mm]
- [mm] \limes_{n\rightarrow\infty}= \pm \infty; \limes_{n\rightarrow0}= \pm \infty [/mm] & Extrempunkte sollten nur lokal vorhanden sein, nicht aber global.

zusätzliche Frage:
Wenn nun wie hier eine surjektive Funktion gesucht ist, darf diese dann auch zusätzlich injektiv (also bijektiv) sein?

Bezug
                        
Bezug
Surjektive Abbildung N -> Q: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 So 16.11.2014
Autor: justdroppingby


> Um die Anforderungen an die gesuchte Funktion mal etwas
> umgangssprachlicher auszudrücken:
> - Die Funktionskurve befindet sich nur rechts von der
> y-Achse (wegen [mm]\IN).[/mm]
>  - [mm]\limes_{n\rightarrow\infty}= \pm \infty; \limes_{n\rightarrow0}= \pm \infty[/mm]
> & Extrempunkte sollten nur lokal vorhanden sein, nicht aber
> global.

Ist dir bewusst, dass das hier keine reelle Funktion ist?
Das hier [mm]\limes_{n\rightarrow 0}= \pm \infty[/mm] z.B. macht für eine Funktion mit Definitionmenge [mm] $\IN$, [/mm] auch bekannt unter dem Namen Folge, keinen Sinn.


> zusätzliche Frage:
> Wenn nun wie hier eine surjektive Funktion gesucht ist,
> darf diese dann auch zusätzlich injektiv (also bijektiv)
> sein?

Ja darf sie. Wieso sollte sie das nicht dürfen?

Aber wenn das die zusätzliche Frage ist, was ist dann die ursprüngliche Frage?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de