www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Sylow Untergruppe
Sylow Untergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sylow Untergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Mo 02.03.2009
Autor: Vogelfaenger

Aufgabe
Gebt ein Beispiel einer Gruppe von Ordnung [mm] 918=2*3^3*17 [/mm] mit [mm] m_2(G)=17 [/mm]

Hallo alle

Ich hab ein Bisschen Schwierigkeiten mit dieser Aufgabe. Ich hab schon rausgefunden, dass die Gruppe [mm] D_{17}\times C_{27} [/mm] die Ordnung 34*27=918 hat, aber wenn's dazu kommt, zu zeigen, dass die Anzahl von Syl-2-Untergr. 17 ist, gehts nicht ...

Also ich würde meinen, die Methode wär zu zeigen, dass die Anzahl von Elementen von Ordnung 2 in [mm] D_{17}\times C_{27} [/mm] eben 17 ist (richtig?).
Nun: Es gibt eben 17 Elemente von Ordnung 2 in [mm] D_{17}; [/mm] die 17 Spiegelungen. Und es gibt keine Elemente von Ordnung 2 in [mm] C_{27}. [/mm] Dann hat ein Element von Ordnung 2 in der Produktgruppe die Form (d,e), wo d von Ordnung 2 ist in [mm] D_{17} [/mm] und e das neutrale Element in [mm] C_{27}. [/mm]

Und von denen gibt es eben 17 oder?

        
Bezug
Sylow Untergruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Di 03.03.2009
Autor: djmatey

Hallo,

was sind denn [mm] C_n [/mm] und [mm] D_n [/mm] bei dir?
[mm] m_2(G) [/mm] ist anscheinend die Anzahl der 2-Sylow-Untergruppen...

LG djmatey

Bezug
        
Bezug
Sylow Untergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 03:32 Mi 04.03.2009
Autor: felixf

Hallo zusammen

> Gebt ein Beispiel einer Gruppe von Ordnung [mm]918=2*3^3*17[/mm] mit
> [mm]m_2(G)=17[/mm]
>  Hallo alle
>  
> Ich hab ein Bisschen Schwierigkeiten mit dieser Aufgabe.
> Ich hab schon rausgefunden, dass die Gruppe [mm]D_{17}\times C_{27}[/mm]
> die Ordnung 34*27=918 hat, aber wenn's dazu kommt, zu
> zeigen, dass die Anzahl von Syl-2-Untergr. 17 ist, gehts
> nicht ...

Wieso? Du hast es doch gezeigt:

> Also ich würde meinen, die Methode wär zu zeigen, dass die
> Anzahl von Elementen von Ordnung 2 in [mm]D_{17}\times C_{27}[/mm]
> eben 17 ist (richtig?).

Genau. Jede 2-Sylow-Untergruppe von deiner Gruppe $G$ hat Ordnung 2 und besteht somit aus dem Neutralelement und genau einem Element der Ordnung 2.

>  Nun: Es gibt eben 17 Elemente von Ordnung 2 in [mm]D_{17};[/mm] die
> 17 Spiegelungen. Und es gibt keine Elemente von Ordnung 2
> in [mm]C_{27}.[/mm]

Die Gruppe [mm] $C_{27}$ [/mm] hat vermutlich 27 Elemente? (Ich vermute mal das soll eine zyklische Gruppe der Ordnung 27 darstellen, aber im Endeffekt ist es voellig egal, hauptsache die Gruppenordnung ist nicht durch 2 teilbar.)

> Dann hat ein Element von Ordnung 2 in der
> Produktgruppe die Form (d,e), wo d von Ordnung 2 ist in
> [mm]D_{17}[/mm] und e das neutrale Element in [mm]C_{27}.[/mm]

Genau.

> Und von denen gibt es eben 17 oder?

Ja.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de