Sylowgruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien p,q,r verschiedene Primzahlen. G ist eine Gruppe der Ordnung [mm] q*p^2 [/mm] oder p*q*r. Dann folgt: G hat eine normale Sylowgruppe. |
Hallo Leute kann mir jemand paar Tipps geben, wie ich diese Aussage beweisen kann??
LG m-student
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:15 Fr 20.01.2006 | Autor: | Hanno |
Hallo.
Du musst den dritten Sylowschen Satz verwenden. Zur Erinnerung:
Sylow III: Es sei $G$ Gruppe, $p$ Primteiler von $|G|$ und [mm] $s_p$ [/mm] die Anzahl der $p$-Sylowgruppen von $G$. Dann ist [mm] $s_p$ [/mm] Teiler von $|G|$ und es existiert ein [mm] $k\in\IN_0$ [/mm] mit [mm] $s_p=k\cdot [/mm] p+1$. Insbesondere ist [mm] $s_p$ [/mm] kein Teiler von $p$.
Betrachten wir einmal die erste Aufgabe:
Für verschiedene Primzahlen $p,q$ sei $G$ Gruppe der Ordnung [mm] $p\cdot [/mm] q$. Ferner seien [mm] $s_p,s_q$ [/mm] die Anzahl der $p$- bzw. $q$-Sylowgruppen von $G$. Prüfe nun, welche Werte [mm] $s_p,s_q$ [/mm] annehmen können. Wenn du zeigen kannst, dass eine der beiden Werte gleich 1 sein muss, dann bist du fertig; denn eine p-Sylow-Gruppe von ist genau dann Normalteiler, wenn sie die einzige p-Sylow-Gruppe ist (dies wiederum folgt aus einem Korollar von Sylow II: je zwei p-Sylow-Gruppen sind konjugiert). Betrachte z.B. [mm] $s_p$: [/mm] es ist [mm] $s_p$ [/mm] Teiler von $pq$, jedoch nicht von $p$; es bleiben nur noch die Fälle [mm] $s_p=1$ [/mm] oder [mm] $s_p=q$ [/mm] zu untersuchen. Für [mm] $s_q$ [/mm] gilt Ähnliches: es kann nur die Werte [mm] $1,p,p^2$ [/mm] annehmen. Da entweder $p<q$ oder $q<p$ kann einer der Fälle [mm] $s_p=q$ [/mm] oder [mm] $s_q=p$ [/mm] schon einmal ausgeschlossen werden. Wenn du weiterdenkst, wirst du feststellen, dass der einzige Fall, den du näher betrachten musst, [mm] $s_q=p^2$ [/mm] ist. In diesem Falle gibt es also genau [mm] $q^2$ [/mm] verschiedene p-Sylowgruppen, die alle die Ordnung $q$ haben; leite daraus einen Widerspruch zu $|G|=p^2q$ ab, indem du die Ordnung der Vereinigung aller $p$-Sylowgruppen betrachtest.
Die zweite Aufgabe läuft nach dem selben "Schema". Ich sage aber bewusst nichts weiter dazu, da du das selbst üben musst und es wichtig ist, dass du es selbst schaffst, mit Hilfe von Sylow III und einigen elementar zahlentheoretischen Überlegungen Rückschlüsse auf die Anzahl der Sylowgruppen zu ziehen.
Viel Erfolg!
Liebe Grüße,
Hanno
|
|
|
|
|
Hallo Hanno!
wieso ist [mm] s_{q} [/mm] = [mm] p^{2} [/mm] ist der einzige Fall?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:05 Sa 21.01.2006 | Autor: | Hanno |
Hallo.
Nimm an, es sei $q<p$.
Betrachten wir die Anzahl [mm] $s_p$. [/mm] Es ist [mm] $s_p=1$ [/mm] oder [mm] $s_p=q$. [/mm] In ersterem Falle sind wir fertig. In letzterem gäbe es nun ein [mm] $k\in\IN$ [/mm] mit [mm] $q=s_p=kp+1\geq [/mm] 1p+1>q$ - Widerspruch. Also muss [mm] $s_p=1$ [/mm] gelten.
Ist umgekehrt $p<q$, so folgern wir, dass nicht [mm] $s_q=p$ [/mm] gelten kann. Es bleibt also nur noch [mm] $s_q=p^2$.
[/mm]
Liebe Grüße,
Hanno
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:31 Sa 21.01.2006 | Autor: | m-student |
Hallo Hanno,
jetzt versteh ich bissle mehr! Vielen Dank für deine Hilfe!
LG
m-student
|
|
|
|