www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Sylowgruppen
Sylowgruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sylowgruppen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:56 So 12.11.2006
Autor: Berti

Aufgabe
Bestimmen Sie alle p-Sylowgruppen der [mm] S_{5} [/mm] und der [mm] D_{n} [/mm]

Hallo, vielleicht kann mir jemand an einem Beispiel zeigen, wie man Sylowgruppen bestimmt. Ich habe die Definition vor mir liegen und die bringt mich einfach nicht weiter, da ich sie nicht richtig verstehe.

        
Bezug
Sylowgruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Mo 13.11.2006
Autor: moudi

Hallo Berti

z.B. [mm] $S_5$ [/mm]
[mm] $S_5$ [/mm] hat 120 Elemente und [mm] $120=2^3\cdot 3\cdot [/mm] 5$.
[mm] $S_5$ [/mm] besitzt daher eine 2-Sylowuntergruppe der Ordnung 8, eine 3-Sylowuntergruppe der Ordnung 3 und eine 5-Sylowuntergruppe der Ordnung 5.

Gruppen der Ordnung 3 und 5 sind einfach, du musst nur Elemente von [mm] $S_5$ [/mm] finden, die die Ordnung 3 und 5 haben, diese erzeugen dann zyklische Untergruppen der Ordnung 3 rsp. 5.

Für die 2-Sylowuntegruppe würde ich folgendes beachten: [mm] $S_4$ [/mm] ist eine Untegruppe von [mm] $S_5$ [/mm] und [mm] $S_4$ [/mm] enthält 24 Elemente. Daher besitzt [mm] $S_4$ [/mm] eine 2-Sylowuntergruppe der Ordnung 8, die dann automatisch auch 2-Sylowuntergruppe von [mm] $S_5$ [/mm] ist. Ich würde daher in [mm] $S_4$ [/mm] suchen.

mfG Moudi

Bezug
                
Bezug
Sylowgruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:15 Mo 13.11.2006
Autor: Berti

Danke das hilft mir schon weiter. Also haben die Untergruppen immer die Ordnungen der Faktoren bei der Primfaktorzelegung wenn ich das richtig verstanden habe.

Bezug
                        
Bezug
Sylowgruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Di 14.11.2006
Autor: moudi

Hallo Bertie

Ja die Ordnung der p-Sylowuntergruppe ist die höchste p-Potenz, die die Gruppenordnung teilt.

mfg Moudi

Bezug
                
Bezug
Sylowgruppen: Rückfrage Ordnung
Status: (Frage) beantwortet Status 
Datum: 10:44 Fr 09.02.2007
Autor: demo


> z.B. [mm]S_5[/mm]
>  [mm]S_5[/mm] hat 120 Elemente und [mm]120=2^3\cdot 3\cdot 5[/mm].
> [mm]S_5[/mm] besitzt daher eine 2-Sylowuntergruppe der Ordnung 8,
> eine 3-Sylowuntergruppe der Ordnung 3 und eine
> 5-Sylowuntergruppe der Ordnung 5.

Warum habt die 3-Sylowgruppe Ordnung 3 und die 5 Ordnung 5? ICh verstehe die Erklärung mit der höchsten Potenz nicht.


> Gruppen der Ordnung 3 und 5 sind einfach,

Warum sind diese einfach?

Bezug
                        
Bezug
Sylowgruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Fr 09.02.2007
Autor: moudi

Hallo demo

Eine p-Sylowuntergruppe einer endlichen Gruppe hat immer eine p-Potenz als Ordnung, und zwar die höchste p-Potenz, die die Gruppenordnung teilt.

Eine 3-Sylowuntergruppe einer Gruppe G der Ordnung 120 hat notwendigerweise 3 Elemente, weil [mm] $3^1=3$ [/mm] ein Teiler von 120 ist, aber [mm] $3^2=9$ [/mm] nicht.

>
> > Gruppen der Ordnung 3 und 5 sind einfach,
>
> Warum sind diese einfach?

Ich meinte hier, dass Untergruppen der Ordnung 3 und 5 einfach zu bestimmen sind. Denn solche Gruppen sind zyklisch (und damit einfach im Sinne der Gruppentheorie), man muss daher nur ein Element finden, dass die Ordnung 3 hat, das erzeugt dann automatisch eine Untergruppe der Ordnung 3 (analog für 5).

mfG Moudi> > z.B.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de