Sylowuntergruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei G eine Gruppe der Ordnung 2001. Zeigen Sie:
a) die p-Sylowuntergruppen von G sind normal für p = 23 und p = 29;
b) die 3-Sylowuntergruppen sind auch normal;
c) G ist zyklisch. |
Hallo
Wie gehe ich an diese Aufgabe ran und wie sieht der Beweis aus?? Wäre nett, wenn mir jemand hilft!
Lg Uschi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:46 So 25.06.2006 | Autor: | Jan_Z |
Hallo,
für den Beweis musst du die folgenden allgemeine Fakten kennen:
1) Alle $p$-Sylowgruppen sind zueinander konjugiert. Dies impliziert, dass die $p$-Sylowgruppen genau dann normal sind, wenn es genau eine solche gibt.
2) Die Anzahl der $p$-Sylowgruppen einer Gruppe $G$ teilt den Index $(G:P)$ einer beliebigen $p$-Sylowgruppe $P$ in $G$,
3) Die Anzahl der $p$-Sylowgruppen einer Gruppe $G$ ist [mm] $\equiv [/mm] 1$ mod $p$.
4) Sind $H$ und $H'$ zwei normale Untergruppen von $G$ mit zueinander primen Ordnungen, so ist $HH'$ eine zu [mm] $H\times [/mm] H'$ isomorphe Untergruppe von $G$. Induktiv folgt damit: Sind [mm] $H_{1}\dots H_{m}$ [/mm] normale Untergruppen von $G$ mit zueinander primen Ordnungen, so ist [mm] $H_{1}\cdots H_{m}$ [/mm] eine zu [mm] $H_{1}\times\dots\times H_{m}$ [/mm] isomorphe Untergruppe von $G$ (dieser Punkt ist nicht schwer zu beweisen)
Nun zu deiner Aufgabe:
a) Es ist [mm] $|G|=2001=3\cdot23\cdot29$. [/mm] Punkt 2 und 3 angewandt auf $p=23$ und $p=29$ folgt sofort, dass die Anzahl der $p$-Sylowgruppen 1 sein muss.
b) Wählen wir $H$ bzw. $H'$ in Punkt 4 als die $23$- bzw. $29$-Sylowgruppe, so folgt, dass $G$ eine Gruppe $T$ der Ordnung 667 enthält. Für den Fall $p=3$ folgt aus Punkt 2 und 3, dass die Anzahl der $3$-Sylowgruppen entweder 1 oder 667 sein muss. Angenommen, sie ist 667: Da die $3$-Sylowgruppen sich untereinander nur in [mm] $\{e\}$ [/mm] schneiden, enthält die Vereinigung aller $3$-Sylowgruppen dann $667(3-1)+1=1335$ verschiedene Elemente. Ebenso schneiden die $3$-Sylowgruppen die Untergruppe $T$ nur in [mm] $\{e}\$, [/mm] also müsste $G$ insgesamt $667(3-1)+667+1=2002$ verschiedene Elemente beinhalten, Widerspruch. Also existiert nur eine $3$-Sylowgruppe.
c) Sind [mm] $H_{1},H_{2}$ [/mm] bzw. [mm] $H_{3}$ [/mm] die $3$-,$23$- bzw. $29$-Sylowgruppe, so folgt mit Punkt 1, dass [mm] $G\cong H_{1}\times H_{2}\times H_{3}$ [/mm] ist. [mm] $H_{1},H_{2}$ [/mm] bzw. [mm] $H_{3}$ [/mm] sind jeweils zyklisch und haben zueinander prime Ordnungen, also ist $G$ auch zyklisch.
Viele Grüße, Jan
|
|
|
|