www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Symmetrien
Symmetrien < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Mo 05.12.2011
Autor: sunnygirl26

Ich hab hier eine Aufgabe in der ich die Automorphismengruppe von einer Standardparabel berechnen soll, allerdings komme ich mit diesem ganzen Thmea Dreicke und so nicht zurecht und bräuchte jemanden der mir mal ganz genau erklärt was Automorphismus bzw. Symmetrien sind.

        
Bezug
Symmetrien: Aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Mo 05.12.2011
Autor: sunnygirl26

oder vielleicht kann mir jemand erstmal genau erklären wie das mit der symmetrie funktioniert

Bezug
        
Bezug
Symmetrien: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Mi 07.12.2011
Autor: rainerS

Hallo!

> Ich hab hier eine Aufgabe in der ich die
> Automorphismengruppe von einer Standardparabel berechnen
> soll, allerdings komme ich mit diesem ganzen Thmea Dreicke
> und so nicht zurecht und bräuchte jemanden der mir mal
> ganz genau erklärt was Automorphismus bzw. Symmetrien
> sind.  

Hast du dir schon mal []den Wikipedia-Artikel angeschaut?

Ganz allgemein bedeutet Symmetrie "Invarianz unter gewissen Transformationen", genauer: die Transformation bildet ein Objekt bijektiv auf sich selbst ab. Ein

Zum Beispiel: Ein Kreis wird auf sich selbst abgebildet, wenn ich um den Mittelpunkt des Kreises drehe.

Eine solche bijektive Abbildung eines Objekts(hier: des Kreises) auf sich selbst nennt man Automorphismus.

Hasst du zwei solcher Automorphismen [mm] $\phi_1$, $\phi_2$, [/mm] dann ist die Hintereinanderausführung [mm] $\phi_2\circ\phi_1$ [/mm] auch ein Automorphismus. Alle Automorphismen bilden eine Gruppe mit der Komposition [mm] $\circ$ [/mm] als Gruppenverknüpfung.

Nehmen wir wieder den Kreis: außer den Drehungen um den Mittelpunkt gibt es noch die Spiegelungen an einer Geraden durch den Mittelpunkt, die ebenfalls Automorphismen sind. Jede Hintereinanderausführung zweier Drehungen ist wieder eine Drehung, jede Hintereinanderausführung einer Spiegelung und einer Drehung ist ein Spigelung, und jede Hintereinanderausführung zweier Spiegelungen ist eine Drehung.

Um zur Parabel in der Aufgabe zurückzukommen: überlege dir, welche Abbildungen der xy-Ebene auf sich selbst die Parabel bijektiv auf sich selbst abbilden. Eine solche Abbildung fällt mir dabei sofort ein.

Viele Grüße
   Rainer

Bezug
                
Bezug
Symmetrien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Mi 07.12.2011
Autor: sunnygirl26

Also wenn P: [mm] \IR \to \IR [/mm] : x [mm] \to x^2 [/mm] die Normalparabel ist und [mm] Aut(P):{\alpha \in O(\IR^2) : \alpha (P) = P} [/mm] ist muss ich rausfinden was [mm] \alpha [/mm] für eine Funktion sein muss damit das gilt.
Also damit [mm] \alpha \circ [/mm] P = P ist?

Dazu würden mir 3 Abbildungen einfallen:

1. [mm] \alpha: \IR^2 \to \IR^2 [/mm] : x  [mm] \to [/mm] x
2.                                         x [mm] \to [/mm] |x|
3.                                         x [mm] \to [/mm] -x

weil wenn ich dann [mm] \alpha(P) [/mm] einsetze also [mm] \alpha(x^2) [/mm] kommt [mm] x^2 [/mm] wieder raus.....
      

Bezug
                        
Bezug
Symmetrien: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mi 07.12.2011
Autor: fred97


> Also wenn P: [mm]\IR \to \IR[/mm] : x [mm]\to x^2[/mm] die Normalparabel ist
> und [mm]Aut(P):{\alpha \in O(\IR^2) : \alpha (P) = P}[/mm] ist muss
> ich rausfinden was [mm]\alpha[/mm] für eine Funktion sein muss
> damit das gilt.
>  Also damit [mm]\alpha \circ[/mm] P = P ist?

Das hast Du mißverstanden !!

Es ist [mm] $P=\{(x,x^2): x \in \IR \}$ [/mm]

P ist also eine Menge ! Nämlich der Graph der Normalparabel

>  
> Dazu würden mir 3 Abbildungen einfallen:
>  
> 1. [mm]\alpha: \IR^2 \to \IR^2[/mm] : x  [mm]\to[/mm] x
>  2.                                         x [mm]\to[/mm] |x|
>  3.                                         x [mm]\to[/mm] -x
>  

Das sind keine Abbildungen von [mm] \IR^2 [/mm] in [mm] \IR^2 [/mm]


> weil wenn ich dann [mm]\alpha(P)[/mm] einsetze also [mm]\alpha(x^2)[/mm]
> kommt [mm]x^2[/mm] wieder raus.....
>        

Gesucht sind bijektive Abbildungen [mm] \alpha [/mm] mit

       [mm] \alpha(\{(x,x^2): x \in \IR \})=\{(x,x^2): x \in \IR \} [/mm]

FRED

Bezug
                                
Bezug
Symmetrien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mi 07.12.2011
Autor: sunnygirl26

Ja bei den Abbildungen [mm] \alpha [/mm] hab ich mich vertan meinte von [mm] \IR \to \IR [/mm]

hmm also wenn P eine Menge ist und [mm] \alpha [/mm] damit auch kann ich dann sagen

[mm] \alpha [/mm] 1 { [mm] (x,x):x\in \IR [/mm]  }
[mm] \alpha [/mm] 2 {(x,|x|): x [mm] \in \IR [/mm] }
[mm] \alpha [/mm] 3 {(x, -x) : x [mm] \in \IR [/mm] }      ?

Bezug
                                        
Bezug
Symmetrien: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Mi 07.12.2011
Autor: fred97


> Ja bei den Abbildungen [mm]\alpha[/mm] hab ich mich vertan meinte
> von [mm]\IR \to \IR[/mm]

Nein !!!!   Gesucht sind bijektive Abbildungen [mm] $\alpha:P \to [/mm] P$


>
> hmm also wenn P eine Menge ist und [mm]\alpha[/mm] damit auch


Neeeeeiiiin ! [mm] \apha [/mm] ist keine Menge !


> kann
> ich dann sagen
>
> [mm]\alpha[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1 { [mm](x,x):x\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  }

> [mm]\alpha[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

2 {(x,|x|): x [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  [mm]\alpha[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

3 {(x, -x) : x [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}      ?

Das ist nur dummes Zeug ! Pardon....

FRED

>  


Bezug
                                                
Bezug
Symmetrien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mi 07.12.2011
Autor: sunnygirl26

d.h. ich  suche bijektive abbildungen [mm] \alpha [/mm] : {(x,y) [mm] \in \IR^2 [/mm] : [mm] x^2=y [/mm] } [mm] \to [/mm] {(x,y) [mm] \in \IR^2 [/mm] : [mm] x^2 [/mm] = y } also von P [mm] \to [/mm] P

und für diese Abbildungen muss gelten [mm] \alpha [/mm] (P) =P hab ich es jetzt richtig verstanden?

Bezug
                                                        
Bezug
Symmetrien: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 07.12.2011
Autor: fred97


> d.h. ich  suche bijektive abbildungen [mm]\alpha[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: {(x,y) [mm]\in \IR^2[/mm]

> : [mm]x^2=y[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} [mm]\to[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{(x,y) [mm]\in \IR^2[/mm] : [mm]x^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= y } also von P [mm]\to[/mm] P

>
> und für diese Abbildungen muss gelten [mm]\alpha[/mm] (P) =P hab
> ich es jetzt richtig verstanden?

Ja. Das hat Rainer Dir hier

                https://matheraum.de/read?i=847147

ausführlichst erklärt. Liest Du sowas eigentlich nicht ?

FRED


Bezug
                                                                
Bezug
Symmetrien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:26 Mi 07.12.2011
Autor: sunnygirl26

Doch ich habe das gelesen aber wohl falsch verstanden, da ich dachte [mm] \alpha [/mm] wäre eine Abbildung von [mm] \IR \to \IR [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de