www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Symmetrien beliebiger n-Ecke
Symmetrien beliebiger n-Ecke < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrien beliebiger n-Ecke: Beweisansatz
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 10.11.2014
Autor: laeuftbeidir

Aufgabe
Gegeben sei ein $n$-Eck [mm] $P_n$ [/mm] in der Ebene. Zeigen Sie:

a) Jede Symmetrieabbildung [mm] $f\in Sym(P_n)$ [/mm] ist entweder eine Drehung oder eine Spiegelung.
(Hinweis: Sie dürfen für den Beweis die folgende Aussage benutzen: Jede Isometrie der Ebene ist durch die Bildpunkte von drei Punkten festgelegt, welche nicht auf einer gemeinsamen Geraden liegen.)

b) [mm] $Sym(P_n)$ [/mm] besitzt höchstens $2n$ Elemente.

c) Besitzt [mm] $Sym(P_n)$ [/mm] genau $2n$ Elemente, so ist [mm] $P_n$ [/mm] ein regelmäßiges $n$-Eck.

d) Wir bezeichnen die Symmetriegruppe des regelmäßigen $n$-Ecks mit [mm] $D_n$. [/mm] Untersuchen Sie für die Fälle $n=3$ und $n=4$ die folgende Frage: Für welche Untergruppen $H$ von [mm] $D_n$ [/mm] gibt es ein $n$-Eck [mm] $P_n$, [/mm] für das [mm] $Sym(P_n)$ [/mm] isomorph zu $H$ ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich bin bei dieser Aufgabe leider völlig ansatzlos.

Kann ich bei a) in irgendeiner Form einen Widerspruchsbeweis führen?
Annehmen $f$ sei weder Spiegelung noch Drehung und damit zeigen, dass die Voraussetzung aus dem Hinweis verletzt wird? Wenn ja, wie fange ich am Besten an?

Bei b) habe ich erst überlegt eine Induktion über Verknüpfungstafeln zu führen, bin damit aber gescheitert. Als nächsten Ansatz habe ich überlegt, ob man (wie vielleicht auch bei Teil c) über die Ordnung etwas beweisen kann, bin daran aber ebenfalls gescheitert.

Kann mir vielleicht jemand einen Ansatz geben?

Vielen Dank!

        
Bezug
Symmetrien beliebiger n-Ecke: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Mi 12.11.2014
Autor: justdroppingby

Hallo,

a)
bedenke, dass Kanten wieder auf kanten abgebildet werden müssen.
D.h. insbesondere die Bildpunkte zweier nebeneinanderliegender Punkte liegen wieder nebeneinander.
Und je nachdem ob sich die "Richtung" der Kante geändert hat ist es eine Drehung oder Spiegelung.

b)
Rein aus Kuriosität:
Was ist eine Induktion über Verknüpfungstafeln ?
Es geht hier ziemlich einfach: Zählen,
Wie viele Drehungen gibt es höchsten, wie viele Spiegelungen?

c)
die Ordnung von was in was?
Man könnte z.B. über die Ordnung der Drehungen argumentieren und damit die Drehwinkel bstimmen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de