www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Symmetrische Bilinearform, reg
Symmetrische Bilinearform, reg < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrische Bilinearform, reg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:36 Fr 03.06.2011
Autor: Okus

Aufgabe
Sei f eine symmetrische Bilinearform auf dem K-Vektorraum V (K ein Körper).
Ein Untervektorraum U von V heißt totalisotrop, wenn U [mm] \subseteq U\perp [/mm] ist
a) Sei V = R4. Man gebe ein Beispiel für ein reguläres f, derart dass V einen 1-
dimensionalen totalisotropen Untervektorraum enthält aber keinen 2-dimensionalen.

Ich brauche dringend hilfe. ich komme einfach nicht auf die lösung.

        
Bezug
Symmetrische Bilinearform, reg: Antwort
Status: (Antwort) fertig Status 
Datum: 01:59 Fr 03.06.2011
Autor: felixf

Moin!

> Sei f eine symmetrische Bilinearform auf dem K-Vektorraum V
> (K ein Körper).
>  Ein Untervektorraum U von V heißt totalisotrop, wenn U
> [mm]\subseteq U\perp[/mm] ist
>  a) Sei V = R4. Man gebe ein Beispiel für ein reguläres
> f, derart dass V einen 1-
>  dimensionalen totalisotropen Untervektorraum enthält aber
> keinen 2-dimensionalen.
>  Ich brauche dringend hilfe. ich komme einfach nicht auf
> die lösung.  

Du musst $f$ so waehlen, dass [mm] $\{ v \in \IR^4 \mid f(v, v) = 0 \}$ [/mm] eindimensional ist.

Weisst du, was die Beziehung dieses UVRs zur Matrix von $f$ ist? (Man kann ja $f(v, w) = [mm] v^T [/mm] A w$ schreiben mit einer Matrix $A [mm] \in \IR^{4 \times 4}$.) [/mm]

LG Felix




Bezug
                
Bezug
Symmetrische Bilinearform, reg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:25 Fr 03.06.2011
Autor: Okus

Ja ich weiß was es mit der "gramschen" martix auf sich hat. aber ich verstehe nicht wirklich, wie ich die matrix gestalten soll

Bezug
                        
Bezug
Symmetrische Bilinearform, reg: Antwort
Status: (Antwort) fertig Status 
Datum: 02:49 Fr 03.06.2011
Autor: felixf

Moin!

> Ja ich weiß was es mit der "gramschen" martix auf sich
> hat.

Gut. Dann sag doch mal, wie man die Dimension von [mm] $\{ v \in \IR^4 \mid f(v, v) = 0 \}$ [/mm] aus der Matrix bestimmen kann. Damit kann man dann auch diese Frage beantworten:

> aber ich verstehe nicht wirklich, wie ich die matrix
> gestalten soll

LG Felix


Bezug
                                
Bezug
Symmetrische Bilinearform, reg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:55 Fr 03.06.2011
Autor: Okus

angenommen wir haben die gramsche martix diag(e,f,g,h).

Dann ist ein vektor (a,b,c,d) genau dann isotrop, wenn a²*e+b²*f+c²*f+d²*g=0 gilt. (ergibt sich durch ausrechnen)

Ich gucke jetzt schon ne weile und versuche durch ausprobieren, dass ist da nur linear abhängige (a,b,c,d) herausbekomme. (dann wäre die menge ja 1-dimensional)

Ich komme irgendwie nicht weiter...

Bezug
                                        
Bezug
Symmetrische Bilinearform, reg: Antwort
Status: (Antwort) fertig Status 
Datum: 01:30 So 05.06.2011
Autor: felixf

Moin!

> angenommen wir haben die gramsche martix diag(e,f,g,h).
>  
> Dann ist ein vektor (a,b,c,d) genau dann isotrop, wenn
> a²*e+b²*f+c²*f+d²*g=0 gilt. (ergibt sich durch
> ausrechnen)

Du meinst [mm] $a^2 [/mm] e + [mm] b^2 [/mm] f + [mm] c^2 [/mm] g + [mm] d^2 [/mm] h = 0$.

> Ich gucke jetzt schon ne weile und versuche durch
> ausprobieren, dass ist da nur linear abhängige (a,b,c,d)
> herausbekomme. (dann wäre die menge ja 1-dimensional)
>  
> Ich komme irgendwie nicht weiter...

Nun, wenn $e, f, g, h [mm] \ge [/mm] 0$ sind, dann ist [mm] $a^2 [/mm] e + [mm] b^2 [/mm] f + [mm] c^2 [/mm] g + [mm] d^2 [/mm] h = 0$ genau dann, wenn alle Summanden gleich 0 sind. Das solltest du ausnutzen.

Tipp: du kannst $e, f, g, h [mm] \in \{ 0, 1 \}$ [/mm] waehlen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de