www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Symmetrische Gruppe S_3
Symmetrische Gruppe S_3 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrische Gruppe S_3: Suche nach Untergruppen
Status: (Frage) beantwortet Status 
Datum: 10:35 Fr 12.06.2009
Autor: Pille456

Aufgabe
Welche Untergruppen hat die symmetrische Gruppe [mm] S_3? [/mm]

Hio!
Ich habe 5 Untergruppen gefunden, nämlich:
[mm] U_1=\{id\}, U_2=\{id,(23)(1)\}, U_3=\{id,(12)(3)\}, U_4=\{id,(13)(2)\}, U_5=\{id,(123),(132)\} [/mm]
1. Frage: Schreibt man das so auf?
2. Frage: Sind die Untergruppen so richtig?
3. Frage: In der vorherigen Teilaufgabe musste man die Verknüpfungstafel für [mm] S_3 [/mm] erstellen.Die habe ich bei dieser Teilaufgabe genutzt und einfach immer geschaut, welche Kombinationen von Verknüpfungen in der Tafel abgeschlossen sind. Nur irgendwie kommt mir diese Methode etwas langwierig vor. Gibt es da auch einen Trick oder eine Abkürzung, sodass man nicht über eine Verknüpfungstafel gehen muss? (Auch im Hinblick zur Klausur ;) )
4. Frage: Gibt es eine Möglichkeit die Anzahl der möglichen Untergruppen zu berechnen? Also über den Satz von Lagrange kann man das Ergebnis im gewissen Maße ja noch kontrollieren, aber die Form der Symmetrischen Gruppe sieht mir so aus, als könne man dabei die Anzahl der Untergruppen vielleicht irgendwie berechen oder so...

Danke ;)

        
Bezug
Symmetrische Gruppe S_3: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 12.06.2009
Autor: angela.h.b.


> Welche Untergruppen hat die symmetrische Gruppe [mm]S_3?[/mm]
>  Hio!
>  Ich habe 5 Untergruppen gefunden,

Hallo,

merke Dir:

zwei Untergruppen bekommt man ohne jegliche Anstrengung stets geschenkt: die, die nur das neutrale Element enthält und die Gruppe selber. letztere hast Du vergessen.

nämlich:

>  [mm]U_1=\{id\}, U_2=\{id,(23)(1)\}, U_3=\{id,(12)(3)\}, U_4=\{id,(13)(2)\}, U_5=\{id,(123),(132)\}[/mm]
>  
> 1. Frage: Schreibt man das so auf?

Ja, Du zählst ja hier die Elemente der Gruppen auf, das kannst Du tun.
Statt (2,3)(1) kannst Du auch (2,3) schreiben, die anderen entsprechend, aber falsch ist's nicht, wi Du es hast.

>  2. Frage: Sind die Untergruppen so richtig?

Bis auf die vergssene: ja.

>  3. Frage: In der vorherigen Teilaufgabe musste man die
> Verknüpfungstafel für [mm]S_3[/mm] erstellen.Die habe ich bei dieser
> Teilaufgabe genutzt und einfach immer geschaut, welche
> Kombinationen von Verknüpfungen in der Tafel abgeschlossen
> sind. Nur irgendwie kommt mir diese Methode etwas
> langwierig vor. Gibt es da auch einen Trick oder eine
> Abkürzung, sodass man nicht über eine Verknüpfungstafel
> gehen muss? (Auch im Hinblick zur Klausur ;) )

Deine Vorgehensweise ist schon in Ordnung.
Da Du weißt, daß die Ordnung der Untergruppe ein Teiler der Gruppenordnung ist, gibt es ja gewisse erste Einschränkungen.

Dann kannst Du Dir auch noch die die Ordung der Elemente anschauen:
Ein Element der Ordnung 3 scheidet für eine Untergruppe der Ordnung 2 sofort aus, weil "Element hoch Gruppenordnung"  das neutrale ergibt.

>  4. Frage: Gibt es eine Möglichkeit die Anzahl der
> möglichen Untergruppen zu berechnen?

Nicht, daß ich wüßte.

Gruß v. Angela


Also über den Satz von

> Lagrange kann man das Ergebnis im gewissen Maße ja noch
> kontrollieren, aber die Form der Symmetrischen Gruppe sieht
> mir so aus, als könne man dabei die Anzahl der Untergruppen
> vielleicht irgendwie berechen oder so...
>  
> Danke ;)


Bezug
                
Bezug
Symmetrische Gruppe S_3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 Fr 12.06.2009
Autor: Pille456

Alles klar, danke! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de