www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Signaltheorie" - Systemantwort
Systemantwort < Signaltheorie < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Systemantwort: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:14 Fr 22.07.2011
Autor: ET_WS07

Aufgabe
Betrachten Sie ein LTI-System mit dem Frequenzgang:

[mm] H_2(j\Omega)=\bruch{1+e^{-j3\Omega}}{1-\bruch{1}{3}e^{j6\Omega}} [/mm]

Bestimmen Sie die Ausgangsfolge [mm] y_2[n] [/mm] für alle n, wenn die Eingangsfolge [mm] x_2[n] [/mm] für alle n folgende Form hat:

[mm] x_2[n]=sin(\bruch{2}{3}\pi*n) [/mm]

Diese Frage habe ich nirgendwo anders gestellt.

Standardvorgehensweise wäre ja entweder inverse Fourier-Transformation von [mm] H_2 [/mm] und Faltung im Zeitbereich oder Fouriertransformation von [mm] x_2, [/mm] Multiplikation im Frequenzbereich und Rücktransformation.

Dies ist eine Klausuraufgabe mit 4/80 Punkten (90 Minuten) und ich sehe irgendwie nicht den Trick, der die Aufgabe in 3,5 Minuten lösbar macht.

Was ich sehe ist, dass die Funktionswerte von [mm] x_2 [/mm] sich nach 3*n wiederholen.
So könnte man schreiben [mm] x_2[n]=\bruch{\wurzel{3}}{2}*(\delta[(n [/mm] mod [mm] 3)-1]-\delta[(n [/mm] mod 3) - 2])
Das alleine hilft mir aber noch nicht weiter... wer hat einen Tipp für mich, wie ich die Aufgabe angehen kann?

        
Bezug
Systemantwort: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Fr 22.07.2011
Autor: ET_WS07

Ich hatte jetzt folgende Idee:

1. Betrag des Frequenzgangs bestimmen. Ergebnis:

[mm] |H_2(j\Omega)|=\wurzel{\bruch{3+3cos(3\Omega)}{\bruch{10}{6}-cos(6\Omega)}} [/mm]

2. [mm] x_2[n] [/mm] hat die Kreisfrequenz [mm] \bruch{2}{3}\pi, [/mm] also den Betrag bei dieser Frequenz ausrechnen:

[mm] |H_2(j\bruch{2}{3}\pi)|=3 [/mm]

3. Lösung der Aufgabe:

[mm] y_2[n] [/mm] = [mm] |H_2(j\bruch{2}{3}\pi)|*x_2[n] [/mm] = [mm] 3*sin(\bruch{2}{3}\pi*n) [/mm]

Ich bin mir zu 90% sicher, dass das so richtig ist, würde mich aber freuen, wenn jemand mir noch die restlichen 10% Sicherheit gibt :-)

Bezug
        
Bezug
Systemantwort: Nicht so klar
Status: (Antwort) fertig Status 
Datum: 09:23 Sa 23.07.2011
Autor: Infinit

Hallo ET-WS07,
ich habe mich bisher mit Kommentaren zu dieser Aufgabe zurückgehalten, da mir so einiges daran nicht klar ist. Du hast eine Übertragungsfunktion gegeben als Form einer (wahrscheinlich) skalierten Größe [mm] \Omega [/mm]. Dies kann die Abtastfrequenz sein, was ich stark vermute, muss es aber nicht. In englischen Fachbüchern wird [mm] \Omega [/mm] als Bezeichnung der 3dB-Grenzfrequenz gerne genutzt, mitunter auch als Bezeichnung für die Nyquistfrequenz.
Diesem System führst Du nun einen abgetasteten Sinus zu, dessen Phase sich von Schritt zu Schritt um 120 Grad vergrößert. Dein Lösungsansatz macht Sinn, wobei ich jedoch noch nicht verstehe, weswegen Du nur die Betragsübertragungsfunktion betrachtest. Wie sieht es denn mit der Phase dieser Übertragungsfunktion aus? Das Ganze wird klarer (zumindest für mich) wenn Du mal den Zusammenhang zwischen [mm] \Omega [/mm] und der diskreten Größe n beschreibst.
Viele Grüße,
Infinit


Bezug
                
Bezug
Systemantwort: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:18 Sa 23.07.2011
Autor: ET_WS07

n ist die unabhängige Variable im Zeitbereich und [mm] \Omega [/mm] ist die unabhängige Variable im Frequenzbereich.

Was die Phase betrifft: Stimmt, die habe ich versehentlich unterschlagen. Allerdings kommt für [mm] \Omega=\bruch{2}{3}\pi [/mm] eine Phasenverschiebung in der Größenordnung [mm] 10^{-9} [/mm] heraus, die man vernachlässigen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de