www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - T^5 kontrahierend
T^5 kontrahierend < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

T^5 kontrahierend: kontrahierende Funktionen
Status: (Frage) beantwortet Status 
Datum: 09:21 Di 06.06.2006
Autor: prima

Aufgabe
Sei (X,d) vollständiger metrischer Raum und sei T: X  [mm] \to [/mm] X eine Abbildung:
b) Die Abbildung [mm] T^5: [/mm]  X  [mm] \to [/mm] X  ist kontrahierend. Ziegen sie durch ein Bsp, dass daraus nicht folgt, dass T Kontrahierend ist.
c)Die Abbildung [mm] T^5: [/mm]  X  [mm] \to [/mm] X sein  kontrahierned. Zeigen sie, dass die Abb T einen eindeutigen Fixpunkt hat.

Hallo zusammen,
Meine erste Frage ist eine total grundlegende.Heißt [mm] T^5, [/mm] dass  fünf Abbildungen miteinander verkringelt sind?
WEnn nein hätte ich die a auch vollkommen falsch gemacht.
Zu der B) da finde ich überhaupt keine VErkringelung.
zu der C) Hier dachte ich kann man mit Cauchyfolgen argumentieren, ähnlich wie im Beweis des Fixpunktsatzes?
Schonmal danke für eure Anregungen!
Eva

Ich habe diesen Artikel in kein anderes Forum gesetzt

        
Bezug
T^5 kontrahierend: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Di 06.06.2006
Autor: piet.t

Hallo Eva,

hier mal meine Vorschläge:

zu a):
Sei [mm] X=\IR^2 [/mm] mit der üblichen Metrik und sei [mm]T:x\mapsto Ax[/mm] mit der Matrix
[mm]A=\pmat{0&1\\0&0}[/mm]
Dann ist ja [mm] T^2 [/mm] schon die Nullabbildung (und damit erst recht [mm] T^5) [/mm] und viel mehr kontrahierend geht eigentlich nicht mehr. Allerdings ist T ja wohl nicht kontrahierend (warum?).

zu b):
Für die Existenz sei [mm] x_0 [/mm] der eindeutig bestimmte Fixpunkt von [mm] T^5, \lambda<1 [/mm] sei der Kontraktionsfaktor.
Dann betrachte folgende Umformung:
[mm]d(x_0,T(x_0)) = d(T^5(x_0),T(T^5(x_0))) = d(T^5(x_0),T^5(T(x_0))) \le \lambda d(x_0,T(x_0))[/mm]
Warum ist jetzt [mm] x_0 [/mm] ein Fixpunkt von T?
....und die Eindeutigkeit überlasse ich dann noch Dir ;-)

Gruß

piet

Bezug
                
Bezug
T^5 kontrahierend: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:48 Mi 07.06.2006
Autor: prima

Vielen Dank für die Bemühungen!
Das Bsp. war super und ich denke ich habe es dann genügend begründet!
An der zweiten muss ich noch ein bisschen knacken. Vielleicht melde ich da nochmal!Danke
Eva


Bezug
                        
Bezug
T^5 kontrahierend: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Sa 10.06.2006
Autor: mathestudentin

Hallo Eva,
könntest du mir vielleicht erklären warum T: [mm] x\mapsto [/mm] Ax mit [mm] A=\pmat{ 0 & 1 \\ 0 & 0 } [/mm] nicht kontrahierend ist.das wär echt super!!

Bezug
                                
Bezug
T^5 kontrahierend: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Sa 10.06.2006
Autor: felixf

Hallo!

> Hallo Eva,

Ich heiss zwar nicht Eva, aber ich versuchs mal trotzdem ;-)

>  könntest du mir vielleicht erklären warum T: [mm]x\mapsto[/mm] Ax
> mit [mm]A=\pmat{ 0 & 1 \\ 0 & 0 }[/mm] nicht kontrahierend ist.das
> wär echt super!!

Es gibt einen Vektor der Laenge 1 (ist ein ganz einfacher), der wird durch $T$ auf einen anderen Vektor der Laenge 1 abgebildet. Und damit kann $T$ nicht kontrahierend sein: Denn dann muesste es eine Konstante $c < 1$ geben so, dass ein Vektor der Laenge 1 auf einen Vektor der Laenge kleinergleich $c$ abgebildet wird.

LG Felix


Bezug
                                        
Bezug
T^5 kontrahierend: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 So 11.06.2006
Autor: mathestudentin

Hallo Felix,
vielen dank für deine Antwort!!!Ich habs jetzt verstanden:)
schönen sonntag noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de