www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Tangens am Einheitskreis
Tangens am Einheitskreis < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangens am Einheitskreis: Aufgabe 1, 2
Status: (Frage) beantwortet Status 
Datum: 17:31 Fr 07.10.2011
Autor: Lalolelo

Aufgabe 1
Am Einheitskreis gibt es analog zu sin (x) und cos (x) die Möglichkeit, tan (x) als Länge abzugreifen. Erläutere dies anhand des Einheitskreises.

Aufgabe 2
In Formelsammlungen findet man die Formel tan (x) = sin(x):cos(x). Begründe auch diese Formel am Einheitskreis.

Hallo,

ich verstehe nicht, wie ich diese Aufgaben lösen kann. Könnt ihr diese Aufgaben lösen und mir erklären, wie ich diese Aufgaben lösen kann.

Danke im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangens am Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Fr 07.10.2011
Autor: Dath

Zu 1: Das ist nicht so ganz einfach. Ich verrate dir die Lösung, das Entscheidende ist aber der Rechenweg, den ich im Moment nicht präsent habe, aber vllt. bist du ja in der Lage, anhand des Ergebnisses den Rechenweg zu konstruieren:
Verlängere die Hypothenuse des in den E-Kreis eingezeichneten Dreiecks. Zeichne ein paralleles Geradenstück von der positiven x-Achse aus, welches bei y=0 x=1 tangential zum Einheitsgkreis verläuft. Da, wo die verlängerte Hypothenuse des Dreiecks das geradenstück schneidet, setzt du einen Punkt an. Die Entfernung vom Punkt (1/0) bis zum Punkt (1/??) ist der Tangens. deswegen sind die ?? gleich dem Tangens des Winkels des Dreiecks (eigentlich hat ein Dreieck drei Winkel, aber ich nehme an, due weißt, welcher gemeint ist ;) )

2.: [mm]sin(x) = \bruch{ Gegenkathete }{ Hypothenuse } cos(x)= \bruch{ Ankathete }{ Hypothenuse } tan(x) = \bruch{ Gegenkathete }{ Ankathete } [/mm]
Was musst du also mit sin(x) und cos(x) machen, damit du auf tan(x) kommst?

Bezug
        
Bezug
Tangens am Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Fr 07.10.2011
Autor: mmhkt

Guten Abend,
eine kleine anschauliche Ergänzung:
[]Tangens am Einheitskreis

Schönen Gruß
mmhkt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de